• Bailey, M. P., , and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., , J. Niu, , P. Yang, , J. A. Kankiewicz, , V. E. Larson, , and T. H. Vonder Haar, 2008: The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds. J. Appl. Meteor. Climatol., 47, 24872495, doi:10.1175/2008JAMC1885.1.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., , C. P. R. Saunders, , M. W. Gallagher, , K. N. Bower, , M. J. Flynn, , T. W. Choularton, , J. Whiteway, , and R. P. Lawson, 2005: Aircraft observations of the influence of electric fields on the aggregation of ice crystals. Quart. J. Roy. Meteor. Soc., 131, 16951712, doi:10.1256/qj.03.217.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., , and R. P. Lawson, 1984: Physical interpretation of results from the HIPLEX-1 experiment. J. Appl. Meteor. Climatol., 23, 523540, doi:10.1175/1520-0450(1984)023<0523:PIORFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crosier, J., and Coauthors, 2011: Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmos. Chem. Phys., 11, 257273, doi:10.5194/acp-11-257-2011.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., , G. Langer, , V. Toutenhoofd, , T. W. Cannon, , and C. A. Knight, 1976: Use of a sailplane to measure microphysical effects of silver iodide seeding in cumulus clouds. J. Appl. Meteor., 15, 264274, doi:10.1175/1520-0450(1976)015<0264:UOASTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, A. G., , J. D. Locatelli, , M. T. Stoelinga, , and P. V. Hobbs, 2005: The IMPROVE-1 storm of 1–2 February 2001. Part II: Cloud structures and the growth of precipitation. J. Atmos. Sci., 62, 34563473, doi:10.1175/JAS3547.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , A. J. Heymsfield, , and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, doi:10.1175/JTECH1922.1.

    • Search Google Scholar
    • Export Citation
  • Fu, D., , and X. Guo, 2012: A cloud-resolving simulation study on the merging processes and effects of topography and environmental winds. J. Atmos. Sci., 69, 12321249, doi:10.1175/JAS-D-11-049.1.

    • Search Google Scholar
    • Export Citation
  • Fukuta, N., , and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, doi:10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, X., , D. Fu, , and J. Wang, 2006: Mesoscale convective precipitation system modified by urbanization in Beijing City. Atmos. Res., 82, 112126, doi:10.1016/j.atmosres.2005.12.007.

    • Search Google Scholar
    • Export Citation
  • Guo, X., , D. Fu, , X. Guo, , and C. Zhang, 2014: A case study of aerosol impacts on summer convective clouds and precipitation over northern China. Atmos. Res., 142, 142157, doi:10.1016/j.atmosres.2013.10.006.

    • Search Google Scholar
    • Export Citation
  • Hallgren, R. E. & , and C. L. Hosler, 1960: Preliminary results on the aggregation of ice crystals. Physics of Precipitation, Geophys. Monogr., Vol. 5, Amer. Geophys. Union, 257263.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., , and G. J. Tripoli, 2011: The spectral ice habit prediction system (SHIPS). Part IV: Box model simulations of the habit-dependent aggregation process. J. Atmos. Sci., 68, 11421161, doi:10.1175/2011JAS3667.1.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., , and P. V. Hobbs, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. II: Warm-frontal clouds. J. Atmos. Sci., 37, 597611, doi:10.1175/1520-0469(1980)037<0597:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., , and P. V. Hobbs, 1981: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. IV: Vertical air motions and microphysical structures of prefrontal surge clouds and cold-frontal clouds. J. Atmos. Sci., 38, 17711784, doi:10.1175/1520-0469(1981)038<1771:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44, 10881099, doi:10.1175/1520-0469(1987)044<1088:AIATCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , A. Bansemer, , P. R. Field, , S. L. Durden, , J. L. Stith, , J. E. Dye, , W. Hall, , and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , C. Schmitt, , A. Bansemer, , and C. H. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, doi:10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , and J. D. Locatelli, 1978: Rainbands, precipitation cores and generating cells in a cyclonic storm. J. Atmos. Sci., 35, 230241, doi:10.1175/1520-0469(1978)035<0230:RPCAGC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , and A. L. Rangno, 1990: Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds. J. Atmos. Sci., 47, 27102722, doi:10.1175/1520-0469(1990)047<2710:RDOHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , S. Chang, , and J. D. Locatelli, 1974: The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79, 21992206, doi:10.1029/JC079i015p02199.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , T. J. Matejka, , P. H. Herzegh, , J. D. Locatelli, , and R. A. Houze, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37, 568596, doi:10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., , P. N. Francis, , H. Flentje, , A. J. Illingworth, , M. Quante, , and J. Pelon, 2003: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE'98. Quart. J. Roy. Meteor. Soc., 129, 20892116, doi:10.1256/rj.01.208.

    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., , and J. E. Jiusto, 1971: Snowfall from a heavily seeded cloud. J. Appl. Meteor., 10, 266269, doi:10.1175/1520-0450(1971)010<0266:SFAHSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hou, T., , H. Lei, , and Z. Hu, 2010: A comparative study of the microstructure and precipitation mechanisms for two stratiform clouds in China. Atmos. Res., 96 (2–3), 447460, doi:10.1016/j.atmosres.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., , S. A. Rutledge, , T. J. Matejka, , and P. V. Hobbs, 1981: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. III: Air motions and precipitation growth in a warm-frontal rainband. J. Atmos. Sci., 38, 639649, doi:10.1175/1520-0469(1981)038<0639:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., , and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46, 31083121, doi:10.1175/1520-0469(1989)046<3108:AOICIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , M. P. Bailey, , J. Hallett, , and G. A. Isaac, 2004: Laboratory and in situ observation of deposition growth of frozen drops. J. Appl. Meteor., 43, 612622, doi:10.1175/1520-0450(2004)043<0612:LAISOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , E. F. Emery, , J. W. Strapp, , S. G. Cober, , and G. A. Isaac, 2013: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic Technol., 30, 25272553, doi:10.1175/JTECH-D-13-00115.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , and P. Zuidema, 2009: Aircraft microphysical and surface-based radar observations of summertime arctic clouds. J. Atmos. Sci., 66, 35053529, doi:10.1175/2009JAS3177.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , R. E. Stewart, , J. W. Strapp, , and G. A. Isaac, 1993: Aircraft observations of the origin and growth of very large snowflakes. Geophys. Res. Lett., 20, 5356, doi:10.1029/92GL02917.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., , R. E. Stewart, , and L. J. Angus, 1998: Observations and numerical simulations of the origin and development of very large snowflakes. J. Atmos. Sci., 55, 32093229, doi:10.1175/1520-0469(1998)055<3209:OANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, G., , and X. Guo, 2012: Distribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing Cloud Experiment (BCE). Chin. Sci. Bull., 57, 24602469, doi:10.1007/s11434-012-5136-9.

    • Search Google Scholar
    • Export Citation
  • Magono, C., , and T. Iwabuchi, 1972: A laboratory experiment on the electrification of ice crystals. Arch. Meteor., Geophys. Bioklimatol.,21A, 287–298.

    • Search Google Scholar
    • Export Citation
  • Matejka, T. J., , R. A. Houze, , and P. V. Hobbs, 1980: Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 106, 2956, doi:10.1002/qj.49710644704.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and R. A. Black, 2004: Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes. J. Atmos. Sci., 61, 422439, doi:10.1175/1520-0469(2004)061<0422:OOPSAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ono, A., 1969: The shape and riming properties of ice crystals in natural clouds. J. Atmos. Sci., 26, 138147, doi:10.1175/1520-0469(1969)026<0138:TSARPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publications, 44 pp.

  • Rutledge, S. A., , and P. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stark, D., , B. A. Colle, , and S. E. Yuter, 2013: Observed microphysical evolution for two east coast winter storms and the associated snow bands. Mon. Wea. Rev., 141, 20372057, doi:10.1175/MWR-D-12-00276.1.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., , J. E. Dye, , A. Bansemer, , A. J. Heymsfield, , C. A. Grainger, , W. A. Petersen, , and R. Cifelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41, 97117, doi:10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., , and N. Fukuta, 1988: Super cooled cloud tunnel studies on the growth of snow crystals between -4°C and -20°C. J. Meteor. Soc. Japan, 66, 841855.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., , C. Inoue, , Y. Furukawa, , T. Endoh, , and R. Naruse, 1986: A vertical wind tunnel for snow process studies. J. Atmos. Oceanic Technol., 3, 182185, doi:10.1175/1520-0426(1986)003<0182:AVWTFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., , T. Endoh, , G. Wakahama, , and N. Fukuta, 1991: Vapor diffusional growth of free-falling snow crystals between -3°C and -23°C. J. Meteor. Soc. Japan, 69, 1530.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., , and A. J. Heymsfield, 2011: Ice crystals growing from vapor in supercooled clouds between −2.5° and −22°C: Testing current parameterization methods using laboratory data. J. Atmos. Sci., 68, 24162429, doi:10.1175/JAS-D-11-017.1.

    • Search Google Scholar
    • Export Citation
  • Woods, C. P., , M. T. Stoelinga, , J. D. Locatelli, , and P. V. Hobbs, 2005: Microphysical processes and synergistic interaction between frontal and orographic forcing of precipitation during the 13 December 2001 IMPROVE-2 event over the Oregon Cascades. J. Atmos. Sci., 62, 34933519, doi:10.1175/JAS3550.1.

    • Search Google Scholar
    • Export Citation
  • Woods, C. P., , M. T. Stoelinga, , and J. D. Locatelli, 2008: Size spectra of snow particles measured in wintertime precipitation in the Pacific Northwest. J. Atmos. Sci., 65, 189205, doi:10.1175/2007JAS2243.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 2
PDF Downloads 16 16 2

Ice Crystal Habits and Growth Processes in Stratiform Clouds with Embedded Convection Examined through Aircraft Observation in Northern China

View More View Less
  • 1 Key Laboratory for Cloud Physics, Chinese Academy of Meteorological Sciences, Beijing, and Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, and Anhui Weather Modification Office, Hefei, China
  • 2 Key Laboratory for Cloud Physics, Chinese Academy of Meteorological Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Ice crystal habits and growth processes in two cases of stratiform clouds with embedded convection are investigated using data observed simultaneously from three aircraft on 18 April 2009 and 1 May 2009 as part of the Beijing Cloud Experiment (BCE). The results show that the majority of ice crystal habits found in the two cases at temperatures between 0° and −16°C included platelike, needle column, capped column, dendrite, and irregular. A mixture of several ice crystal habits was identified in all of the clouds studied. However, the ice crystals recorded in the embedded convection regions contained more dendrites and possessed heavier riming degrees, and the ice crystals identified in the stratiform clouds contained more hexagonal plate crystals. Both riming and aggregation processes played central roles in the broadening of particle size distributions (PSDs), and these processes were more active in embedded convection regions than in stratiform regions. However, riming was more prevalent in the 18 April case than aggregation, though aggregates were evident. In contrast, the 1 May case had a more dominant aggregation processes, but also riming. With the decrease in height, PSDs broadened in both embedded convection regions and stratiform regions, but the broadening rates between 4.8 km (T ≈ −11.6°C) and 4.2 km (T ≈ −8°C) were larger than those between 4.2 km (T ≈ −8°C) and 3.6 km (T ≈ −5°C). In addition, the broadening rates of PSDs in the embedded convection regions were larger than those in the stratiform clouds, as the aggregation and riming processes of ice particles in embedded convection regions were active. High supercooled water content is critical to enhancing riming and aggregation processes in embedded convection regions.

Corresponding author address: Xueliang Guo, Chinese Academy of Meteorological Sciences, No.46, Zhongguancun Street, Haidian District, Beijing 100081, China. E-mail: guoxl@mail.iap.ac.cn

Abstract

Ice crystal habits and growth processes in two cases of stratiform clouds with embedded convection are investigated using data observed simultaneously from three aircraft on 18 April 2009 and 1 May 2009 as part of the Beijing Cloud Experiment (BCE). The results show that the majority of ice crystal habits found in the two cases at temperatures between 0° and −16°C included platelike, needle column, capped column, dendrite, and irregular. A mixture of several ice crystal habits was identified in all of the clouds studied. However, the ice crystals recorded in the embedded convection regions contained more dendrites and possessed heavier riming degrees, and the ice crystals identified in the stratiform clouds contained more hexagonal plate crystals. Both riming and aggregation processes played central roles in the broadening of particle size distributions (PSDs), and these processes were more active in embedded convection regions than in stratiform regions. However, riming was more prevalent in the 18 April case than aggregation, though aggregates were evident. In contrast, the 1 May case had a more dominant aggregation processes, but also riming. With the decrease in height, PSDs broadened in both embedded convection regions and stratiform regions, but the broadening rates between 4.8 km (T ≈ −11.6°C) and 4.2 km (T ≈ −8°C) were larger than those between 4.2 km (T ≈ −8°C) and 3.6 km (T ≈ −5°C). In addition, the broadening rates of PSDs in the embedded convection regions were larger than those in the stratiform clouds, as the aggregation and riming processes of ice particles in embedded convection regions were active. High supercooled water content is critical to enhancing riming and aggregation processes in embedded convection regions.

Corresponding author address: Xueliang Guo, Chinese Academy of Meteorological Sciences, No.46, Zhongguancun Street, Haidian District, Beijing 100081, China. E-mail: guoxl@mail.iap.ac.cn
Save