• Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, doi:10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., , R. Tomas, , J. M. Dennis, , D. B. Chelton, , N. G. Loeb, , and J. L. McClean, 2010: Frontal scale air–sea interaction in high-resolution coupled climate models. J. Climate, 23, 62776291, doi:10.1175/2010JCLI3665.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J., , and G. Chepurin, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309, doi:10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., 2013: Ocean–atmosphere coupling: Mesoscale eddy effects. Nat. Geosci., 6, 594595, doi:10.1038/ngeo1906.

  • Chelton, D. B., , and S. Xie, 2010: Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, doi:10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, doi:10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , M. H. Freilich, , and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., , and C. S. Bretherton, 2004: Quasi-Lagrangian large eddy simulations of cross-equatorial flow in the east Pacific atmospheric boundary layer. J. Atmos. Sci., 61, 18371858, doi:10.1175/1520-0469(2004)061<1837:QLESOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment difference relative analysis. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Frenger, I., , N. Gruber, , R. Knutti, , and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, doi:10.1038/ngeo1863.

    • Search Google Scholar
    • Export Citation
  • Hayes, S., , M. McPhaden, , and J. Wallace, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2, 1500–1506, doi:10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M. C., , W. K. Dewar, , P. Berloff, , S. Kravtsov, , and D. K. Hutchinson, 2009: The effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation. J. Climate, 22, 40664082, doi:10.1175/2009JCLI2629.1.

    • Search Google Scholar
    • Export Citation
  • Kilpatrick, T., , N. Schneider, , and B. Qiu, 2014: Boundary layer convergence induced by strong winds across a midlatitude SST front. J. Climate, 27, 16981718, doi:10.1175/JCLI-D-13-00101.1.

    • Search Google Scholar
    • Export Citation
  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , D. Vickers, , and E. Moore, 2004: Flow adjustments across sea-surface temperature changes. Bound.-Layer Meteor., 111, 553564, doi:10.1023/B:BOUN.0000016600.63382.5f.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milliff, R., , W. G. Large, , J. Morzel, , G. Danabasoglu, , and T. M. Chin, 1999: Ocean general circulation model sensitivity to forcing from scatterometer winds. J. Geophys. Res., 104, 11 33711 358, doi:10.1029/1998JC90004.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., , A. Kuwano-Yoshida, , N. Komori, , S.-P. Xie, , and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, doi:10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Müller, E., 1981: Turbulent flux parameterization in a regional-scale model. Proc. ECMWF Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 193220.

  • Nencioli, F., , C. Dong, , T. Dickey, , L. Washburn, , and J. C. McWilliams, 2010: A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California bight. J. Atmos. Oceanic Technol., 27, 564579, doi:10.1175/2009JTECHO725.1.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanogr. Abstr., 17, 445454, doi:10.1016/0011-7471(70)90059-8.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 23402354, doi:10.1175/2780.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , S. K. Esbensen, , and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18, 27062723, doi:10.1175/JCLI3415.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , S. K. Esbensen, , N. Thum, , R. M. Samelson, , and D. B. Chelton, 2010: Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23, 559581, doi:10.1175/2009JCLI2662.1.

    • Search Google Scholar
    • Export Citation
  • Park, K.-A., , P. Cornillon, , and D. L. Codiga, 2006: Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res.,111, C03021, doi:10.1029/2005JC003016.

  • Putrasahan, D. A., , A. J. Miller, , and H. Seo, 2013: Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans, 63, 6078, doi:10.1016/j.dynatmoce.2013.04.001.

    • Search Google Scholar
    • Export Citation
  • Samelson, R., , and E. Skyllingstad, 2006: On the coupling of wind stress and sea surface temperature. J. Climate, 19, 15571566, doi:10.1175/JCLI3682.1.

    • Search Google Scholar
    • Export Citation
  • Seo, H., , M. Jochum, , R. Murtugudde, , A. J. Miller, , and J. O. Roads, 2007: Feedback of tropical instability-wave-induced atmospheric variability onto the ocean. J. Climate, 20, 58425855, doi:10.1175/JCLI4330.1.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. Mcwilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a non-aligned vertical coordinate. J. Geophys. Res., 108, 3090, doi:10.1029/2001JC001047.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shimada, T., , and S. Minobe, 2011: Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data. Geophys. Res. Lett., 38, L06704, doi:10.1029/2010GL046625.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., , D. Vickers, , L. Mahrt, , and R. Samelson, 2007: Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Bound.-Layer Meteor., 123, 219237, doi:10.1007/s10546-006-9127-8.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., , S.-P. Xie, , and Y. Wang, 2003: Numerical simulation of atmospheric response to Pacific tropical instability waves. J. Climate, 16, 37233741, doi:10.1175/1520-0442(2003)016<3723:NSOART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., , S.-P. Xie, , Y. Wang, , S. K. Ebensen, , and D. Vickers, 2005: Numerical simulation of boundary layer structure and cross-equatorial flow in the eastern Pacific. J. Atmos. Sci., 62, 18121830, doi:10.1175/JAS3433.1.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Song, Q., , P. Cornillon, , and T. Hara, 2006: Surface wind response to oceanic fronts. J. Geophys. Res.,111, C12006, doi:10.1029/2006JC003680.

  • Spall, M. A., 2007: Midlatitude wind stress–sea surface temperature coupling in the vicinity of oceanic fronts. J. Climate, 20, 37853801, doi:10.1175/JCLI4234.1.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., , G. Doms, , U. Schättler, , H. W. Bitzer, , A. Gassmann, , U. Damrath, , and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596, doi:10.1007/s00703-001-0592-9.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., 2013: The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev., 6, 373388, doi:10.5194/gmd-6-373-2013.

    • Search Google Scholar
    • Export Citation
  • Wallace, J., , T. Mitchell, , and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 1492–1499, doi:10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P., , and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 1377–1416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two dimensional hydrodynamics. Physica D, 48, 273294, doi:10.1016/0167-2789(91)90088-Q.

    • Search Google Scholar
    • Export Citation
  • Yi, J., , Y. Du, , Z. He, , and C. Zhou, 2014: Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean Sci., 10, 3948, doi:10.5194/os-10-39-2014.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 76 24
PDF Downloads 43 43 18

Atmospheric Response to Mesoscale Sea Surface Temperature Anomalies: Assessment of Mechanisms and Coupling Strength in a High-Resolution Coupled Model over the South Atlantic

View More View Less
  • 1 Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics, and Center for Climate Systems Modeling, ETH Zürich, Zurich, Switzerland
  • 2 Institute for Atmospheric and Climate Science, and Center for Climate Systems Modeling, ETH Zürich, Zurich, Switzerland
  • 3 Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland, and Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
  • 4 Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zurich, Switzerland
© Get Permissions
Restricted access

Abstract

Many aspects of the coupling between the ocean and atmosphere at the mesoscale (on the order of 20–100 km) remain unknown. While recent observations from the Southern Ocean revealed that circular fronts associated with oceanic mesoscale eddies leave a distinct imprint on the overlying wind, cloud coverage, and rain, the mechanisms responsible for explaining these atmospheric changes are not well established. Here the atmospheric response above mesoscale ocean eddies is investigated utilizing a newly developed coupled atmosphere–ocean regional model [Consortium for Small-Scale Modeling–Regional Ocean Modelling System (COSMO-ROMS)] configured at a horizontal resolution of ~10 km for the South Atlantic and run for a 3-month period during austral winter of 2004. The model-simulated changes in surface wind, cloud fraction, and rain above the oceanic eddies are very consistent with the relationships inferred from satellite observations for the same region and time. From diagnosing the model’s momentum balance, it is shown that the atmospheric imprint of the oceanic eddies are driven by the modification of vertical mixing in the atmospheric boundary layer, rather than secondary flows driven by horizontal pressure gradients. This is largely due to the very limited ability of the atmosphere to adjust its temperature over the time scale it takes for an air parcel to pass over these mesoscale oceanic features. This results in locally enhanced vertical gradients between the ocean surface and the overlying air and thus a rapid change in turbulent mixing in the atmospheric boundary layer and an associated change in the vertical momentum flux.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-14-0195.s1.

Corresponding author address: David Byrne, Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics, CHN E 23.2, Universitatstrasse 16, 8092 Zurich, Switzerland. E-mail: david.byrne@usys.ethz.ch

Abstract

Many aspects of the coupling between the ocean and atmosphere at the mesoscale (on the order of 20–100 km) remain unknown. While recent observations from the Southern Ocean revealed that circular fronts associated with oceanic mesoscale eddies leave a distinct imprint on the overlying wind, cloud coverage, and rain, the mechanisms responsible for explaining these atmospheric changes are not well established. Here the atmospheric response above mesoscale ocean eddies is investigated utilizing a newly developed coupled atmosphere–ocean regional model [Consortium for Small-Scale Modeling–Regional Ocean Modelling System (COSMO-ROMS)] configured at a horizontal resolution of ~10 km for the South Atlantic and run for a 3-month period during austral winter of 2004. The model-simulated changes in surface wind, cloud fraction, and rain above the oceanic eddies are very consistent with the relationships inferred from satellite observations for the same region and time. From diagnosing the model’s momentum balance, it is shown that the atmospheric imprint of the oceanic eddies are driven by the modification of vertical mixing in the atmospheric boundary layer, rather than secondary flows driven by horizontal pressure gradients. This is largely due to the very limited ability of the atmosphere to adjust its temperature over the time scale it takes for an air parcel to pass over these mesoscale oceanic features. This results in locally enhanced vertical gradients between the ocean surface and the overlying air and thus a rapid change in turbulent mixing in the atmospheric boundary layer and an associated change in the vertical momentum flux.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-14-0195.s1.

Corresponding author address: David Byrne, Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics, CHN E 23.2, Universitatstrasse 16, 8092 Zurich, Switzerland. E-mail: david.byrne@usys.ethz.ch

Supplementary Materials

    • Supplemental Materials (PDF 1.08 MB)
Save