Variation of Lightning and Convective Rain Fraction in Mesoscale Convective Systems of the MJO

Katrina S. Virts Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Katrina S. Virts in
Current site
Google Scholar
PubMed
Close
and
Robert A. Houze Jr. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert A. Houze Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Characteristics of mesoscale convective systems (MCSs) in regions affected by the Madden–Julian oscillation (MJO) are investigated using a database of MCSs observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Lightning occurrence detected by the World-Wide Lightning Location Network (WWLLN) is composited in a framework centered on the MCSs. During MJO active periods, MCSs are more numerous and larger, as the convective features persist and attain greater horizontal scales. Anomalies of the lifted index, derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) fields, indicate that MCS environments are more stable during MJO active periods.

Over the Indian Ocean, Maritime Continent, and western Pacific, lightning density in an MCS maximizes during the time that the total number of systems begins to increase as the MJO is beginning to be more active, implying both more vigorous convection and less extensive stratiform rain areas at this transitional time of the MJO. The peak in MJO precipitation coincides with peak occurrence of interconnected MCSs with larger stratiform rain fraction, shown by the Tropical Rainfall Measuring Mission satellite, while composites of lightning frequency show that during MJO active periods the zone of lightning is contracted around the centers of MCSs, and flashes are less frequent.

Denotes Open Access content.

Corresponding author address: Katrina Virts, Department of Atmospheric Sciences, 408 ATG Bldg., Box 351640, Seattle, WA 98195-1640. E-mail: kvirts@uw.edu

Abstract

Characteristics of mesoscale convective systems (MCSs) in regions affected by the Madden–Julian oscillation (MJO) are investigated using a database of MCSs observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Lightning occurrence detected by the World-Wide Lightning Location Network (WWLLN) is composited in a framework centered on the MCSs. During MJO active periods, MCSs are more numerous and larger, as the convective features persist and attain greater horizontal scales. Anomalies of the lifted index, derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) fields, indicate that MCS environments are more stable during MJO active periods.

Over the Indian Ocean, Maritime Continent, and western Pacific, lightning density in an MCS maximizes during the time that the total number of systems begins to increase as the MJO is beginning to be more active, implying both more vigorous convection and less extensive stratiform rain areas at this transitional time of the MJO. The peak in MJO precipitation coincides with peak occurrence of interconnected MCSs with larger stratiform rain fraction, shown by the Tropical Rainfall Measuring Mission satellite, while composites of lightning frequency show that during MJO active periods the zone of lightning is contracted around the centers of MCSs, and flashes are less frequent.

Denotes Open Access content.

Corresponding author address: Katrina Virts, Department of Atmospheric Sciences, 408 ATG Bldg., Box 351640, Seattle, WA 98195-1640. E-mail: kvirts@uw.edu
Save
  • Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, doi:10.1029/2009JD013411.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997: Rain type classification for TRMM precipitation radar. Proc. Int. Geoscience and Remote Sensing Symp., Singapore, IEEE, 16331635.

  • Baker, M. B., H. J. Christian, and J. Latham, 1995: A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quart. J. Roy. Meteor. Soc., 121, 15251548, doi:10.1002/qj.49712152703.

    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., and R. A. Houze Jr., 2013: The precipitating cloud population of the Madden-Julian Oscillation over the Indian and west Pacific Oceans. J. Geophys. Res., 118, 69967023, doi:10.1002/jgrd.50375.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., W. J. Koshak, and R. J. Blakeslee, 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332, doi:10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105, doi:10.1029/2003JD004371.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566, doi:10.1175/MWR-2876.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, doi:10.1002/qj.49712353806.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 13801409, doi:10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 1999: The Lightning Imaging Sensor. Proc. 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, International Commission on Atmospheric Electricity, 726729.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., and S. A. Rutledge, 1998: The vertical structure of TOGA COARE convection. Part I: Radar echo distributions. J. Atmos. Sci., 55, 27302747, doi:10.1175/1520-0469(1998)055<2730:TVSOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and D. R. MacGorman, 1986: Cloud-to-ground lightning activity in mesoscale convective complexes. Mon. Wea. Rev., 114, 23202328, doi:10.1175/1520-0493(1986)114<2320:CTGLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guy, N., and D. P. Jorgensen, 2014: Kinematic and precipitation characteristics of convective systems observed by airborne Doppler radar during the life cycle of a Madden–Julian Oscillation in the Indian Ocean. Mon. Wea. Rev., 142, 13851402, doi:10.1175/MWR-D-13-00252.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121, doi:10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holle, R. L., A. I. Watson, R. E. López, D. R. MacGorman, and R. Ortiz, 1994: The life cycle of lightning and severe weather in a 3–4 June 1985 PRE-STORM mesoscale convective system. Mon. Wea. Rev., 122, 17981808, doi:10.1175/1520-0493(1994)122<1798:TLCOLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys.,42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Elsevier, 432 pp.

  • Houze, R. A., Jr., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57, 30583089, doi:10.1175/1520-0469(2000)057<3058:COTPWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621640, doi:10.1175/1520-0469(1989)046<0621:VVCOOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y.-M., M. Tokuda, and F. Murata, 2006: Convective activity over the Indonesian Maritime Continent during CPEA-I as evaluated by lightning activity and Q1 and Q2 profiles. J. Meteor. Soc. Japan, 84A, 133149, doi:10.2151/jmsj.84A.133.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and R. Ferraro, 2007: EOS/AMSR-E level-2 rainfall. National Snow and Ice Data Center Algorithm Theoretical Basis Doc., 10 pp. [Available online at http://nsidc.org/data/amsre/pdfs/amsr_atbd_supp06_L2_rain.pdf.]

  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. J. Atmos. Sci., 37, 24442457, doi:10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981415, doi:10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Morita, J., Y. N. Takayabu, S. Shige, and Y. Kodama, 2006: Analysis of rainfall characteristics of the Madden–Julian oscillation using TRMM satellite data. Dyn. Atmos. Oceans, 42, 107126, doi:10.1016/j.dynatmoce.2006.02.002.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oh, J.-H., K.-Y. Kim, and G.-H. Lim, 2012: Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Climate Dyn., 38, 11671180, doi:10.1007/s00382-011-1237-4.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and Coauthors, 1997: Lightning in the region of the TOGA COARE. Bull. Amer. Meteor. Soc., 78, 10551067, doi:10.1175/1520-0477(1997)078<1055:LITROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2013: The cloud population and onset of the Madden-Julian Oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res., 118, 11 97911 995, doi:10.1002/2013JD020421.

    • Search Google Scholar
    • Export Citation
  • Rauniyar, S. P., and K. J. E. Walsh, 2011: Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. J. Climate, 24, 325348, doi:10.1175/2010JCLI3673.1.

    • Search Google Scholar
    • Export Citation
  • Riley, E. M., B. E. Mapes, and S. N. Tulich, 2011: Clouds associated with the Madden–Julian oscillation: A new perspective from CloudSat. J. Atmos. Sci., 68, 30323051, doi:10.1175/JAS-D-11-030.1.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., J. B. Brundell, R. H. Holzworth, E. H. Lay, N. B. Crosby, T.-Y. Huang, and M. J. Rycroft, 2009: Growing detection efficiency of the World Wide Lightning Location Network. Proc. AIP Conf., Corte, France, AIP, 15–20, doi:10.1063/1.3137706.

  • Rowe, A. K., and R. A. Houze Jr., 2014: Microphysical characteristics of MJO convection over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 119, 25432554, doi:10.1002/2013JD020799.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and D. T. Shea, 2013: Evaluating WWLLN performance relative to TRMM/LIS. Geophys. Res. Lett., 40, 2344–2348, doi:10.1002/grl.50428.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and D. R. MacGorman, 1988: Cloud-to-ground lightning in the 10–11 June 1985 mesoscale convective system observed during the Oklahoma–Kansas PRE-STORM project. Mon. Wea. Rev., 116, 13931408, doi:10.1175/1520-0493(1988)116<1393:CTGLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., C. Lu, and D. R. MacGorman, 1990: Positive cloud-to-ground lightning in mesoscale convective systems. J. Atmos. Sci., 47, 20852100, doi:10.1175/1520-0469(1990)047<2085:PCTGLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., and K.-M. Lau, 1992: Multiscale phenomena in the tropical atmosphere over the western Pacific. Mon. Wea. Rev., 120, 407430, doi:10.1175/1520-0493(1992)120<0407:MPITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, B., D. E. Waliser, and E. J. Fetzer, 2006: Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. Geophys. Res. Lett., 38, L19803, doi:10.1029/2006GL027752.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802824, doi:10.1175/1520-0493(2002)130<0802:RPMALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tromeur, E., and W. B. Rossow, 2010: Interaction of tropical deep convection with the large-scale circulation in the MJO. J. Climate, 23, 18371853, doi:10.1175/2009JCLI3240.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013a: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, doi:10.1175/BAMS-D-12-00082.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013b: Diurnal lightning variability over the Maritime Continent: Impact of low-level winds, cloudiness, and the MJO. J. Atmos. Sci., 70, 31283146, doi:10.1175/JAS-D-13-021.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T., C. D. Kummerow, and R. Ferraro, 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. Remote Sens., 41, 204214, doi:10.1109/TGRS.2002.808312.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., 1988: The electrification of thunderstorms. Sci. Amer., 259, 8899, doi:10.1038/scientificamerican1188-88.

  • Williams, M., and R. A. Houze Jr., 1987: Satellite-observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505519, doi:10.1175/1520-0493(1987)115<0505:SOCOWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze Jr., 2010: Global variability of mesoscale convective system anvil structure from A-Train satellite data. J. Climate, 23, 58645888, doi:10.1175/2010JCLI3671.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze Jr., 2013: Deep convective systems observed by A-Train in the tropical Indo-Pacific region affected by the MJO. J. Atmos. Sci., 70, 465486, doi:10.1175/JAS-D-12-057.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., R. A. Houze Jr., and A. J. Heymsfield, 2011: Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci., 68, 16531674, doi:10.1175/2011JAS3687.1.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 124, 5399, doi:10.1002/qj.49712454504.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the tropics with and without lightning. Mon. Wea. Rev., 122, 18371851, doi:10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 24582469, doi:10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, doi:10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and R. A. Houze Jr., 2013: Evolution of the population of precipitating cloud systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, doi:10.1175/JAS-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2772 2366 932
PDF Downloads 418 109 17