On the Role of Inertial Instability in Stratosphere–Troposphere Exchange near Midlatitude Cyclones

Shellie M. Rowe Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Shellie M. Rowe in
Current site
Google Scholar
PubMed
Close
and
Matthew H. Hitchman Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Matthew H. Hitchman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In simulations of midlatitude cyclones with the University of Wisconsin Nonhydrostatic Modeling System (UWNMS), mesoscale regions with large negative absolute vorticity commonly occur in the upper troposphere and lower stratosphere (UTLS), overlying thin layers of air with stratospheric values of ozone and potential vorticity (PV). These locally enhanced stratosphere–troposphere exchange (STE) events are related to upstream convection by tracing negative equivalent potential vorticity (EPV) anomalies along back trajectories. Detailed agreement between the patterns of negative absolute vorticity, PV, and EPV—each indicators of inertial instability in the UTLS—is shown to occur in association with enhanced STE signatures. Results are presented for two midlatitude cyclones in the upper Midwest, where convection develops between the subpolar and subtropical jets.

Mesoscale regions of negative EPV air originate upstream in the boundary layer. As they are transported through convection, EPV becomes increasingly negative toward the tropopause. In association with the arrival of each large negative EPV anomaly, a locally enhanced poleward surge of the subpolar jet occurs, characterized by high turbulent kinetic energy and low Richardson number. Isosurfaces of wind speed show that gravity waves emanating from inertially unstable regions connect with and modulate the subpolar and subtropical jets simultaneously. Inertially unstable convective outflow surges can facilitate STE locally by fostering poleward acceleration in the UTLS, with enhanced folding of tropospheric air over stratospheric air underneath the poleward-moving jet.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-14-0210.s1.

Corresponding author address: Matthew H. Hitchman, Department of Atmospheric and Oceanic Sciences, 1225 W. Dayton Street, University of Wisconsin–Madison, Madison, WI 53706. E-mail: matt@aos.wisc.edu

Abstract

In simulations of midlatitude cyclones with the University of Wisconsin Nonhydrostatic Modeling System (UWNMS), mesoscale regions with large negative absolute vorticity commonly occur in the upper troposphere and lower stratosphere (UTLS), overlying thin layers of air with stratospheric values of ozone and potential vorticity (PV). These locally enhanced stratosphere–troposphere exchange (STE) events are related to upstream convection by tracing negative equivalent potential vorticity (EPV) anomalies along back trajectories. Detailed agreement between the patterns of negative absolute vorticity, PV, and EPV—each indicators of inertial instability in the UTLS—is shown to occur in association with enhanced STE signatures. Results are presented for two midlatitude cyclones in the upper Midwest, where convection develops between the subpolar and subtropical jets.

Mesoscale regions of negative EPV air originate upstream in the boundary layer. As they are transported through convection, EPV becomes increasingly negative toward the tropopause. In association with the arrival of each large negative EPV anomaly, a locally enhanced poleward surge of the subpolar jet occurs, characterized by high turbulent kinetic energy and low Richardson number. Isosurfaces of wind speed show that gravity waves emanating from inertially unstable regions connect with and modulate the subpolar and subtropical jets simultaneously. Inertially unstable convective outflow surges can facilitate STE locally by fostering poleward acceleration in the UTLS, with enhanced folding of tropospheric air over stratospheric air underneath the poleward-moving jet.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-14-0210.s1.

Corresponding author address: Matthew H. Hitchman, Department of Atmospheric and Oceanic Sciences, 1225 W. Dayton Street, University of Wisconsin–Madison, Madison, WI 53706. E-mail: matt@aos.wisc.edu

Supplementary Materials

    • Supplemental Materials (ZIP 22.25 MB)
Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Bennetts, D. A., and B. J. Hoskins, 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945962, doi:10.1002/qj.49710544615.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., L. L. Pan, T. Campos, and R. Gao, 2007: Observations of fine-scale transport structure in the upper troposphere from the High-performance Instrumented Airborne Platform for Environmental Research. J. Geophys. Res., 112, D18111, doi:10.1029/2007JD008685.

    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., G. M. Lackmann, and K. M. Mahoney, 2008: Potential vorticity (PV) thinking in operations: The utility of nonconservation. Wea. Forecasting, 23, 168182, doi:10.1175/2007WAF2006044.1.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., E. F. Danielsen, S. Ismail, G. L. Gregory, and S. M. Beck, 1987: Tropopause fold structure determined from airborne lidar in situ measurements. J. Geophys. Res., 92, 21122120, doi:10.1029/JD092iD02p02112.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Reynolds, 1994: Diagnostic study of a narrow cold-frontal rainband and severe winds associated with a stratospheric intrusion. Quart. J. Roy. Meteor. Soc., 120, 235257, doi:10.1002/qj.49712051602.

    • Search Google Scholar
    • Export Citation
  • Büker, M. L., M. H. Hitchman, G. J. Tripoli, R. B. Pierce, E. V. Browell, and M. A. Avery, 2005: Resolution dependence of cross-tropopause ozone transport over East Asia. J. Geophys. Res., 110, D03107, doi:10.1029/2004JD004739.

    • Search Google Scholar
    • Export Citation
  • Büker, M. L., M. H. Hitchman, G. J. Tripoli, R. B. Pierce, E. V. Browell, and J. A. Al-Saadi, 2008: Long-range convective ozone transport during INTEX. J. Geophys. Res., 113, D14S90, doi:10.1029/2007JD009345.

    • Search Google Scholar
    • Export Citation
  • Cao, Z., and H.-R. Cho, 1995: Generation of moist potential vorticity in extratropical cyclones. J. Atmos. Sci., 52, 32633281, doi:10.1175/1520-0469(1995)052<3263:GOMPVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, Z., and D.-L. Zhang, 2004: Tracking surface cyclones with moist potential vorticity. Adv. Atmos. Sci., 21, 830835, doi:10.1007/BF02916379.

    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and L. Kantha, 2008: On turbulence and mixing in the free atmosphere inferred from high-resolution soundings. J. Atmos. Oceanic Technol., 25, 833852, doi:10.1175/2007JTECHA992.1.

    • Search Google Scholar
    • Export Citation
  • Cooper, O., and Coauthors, 2004: On the life cycle of a stratospheric intrusion and its dispersion into polluted warm conveyor belts. J. Geophys. Res., 109, D23S09, doi:10.1029/2003JD004006.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1968: Stratospheric–tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci., 25, 502518, doi:10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duck, T. J., and J. A. Whiteway, 2005: The spectrum of waves and turbulence at the tropopause. Geophys. Res. Lett., 32, L07801, doi:10.1029/2004GL021189.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1981: On the inertial stability of the equatorial middle atmosphere. J. Atmos. Sci., 38, 23542364, doi:10.1175/1520-0469(1981)038<2354:OTISFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1983: A nonsymmetric equatorial inertial instability. J. Atmos. Sci., 40, 807813, doi:10.1175/1520-0469(1983)040<0807:ANEII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and N. Butchart, 1984: Propagation and selective transmission of internal gravity waves in a sudden warming. J. Atmos. Sci., 41, 14431460, doi:10.1175/1520-0469(1984)041<1443:PASTOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Kleinschmidt, 1957: Dynamic meteorology. Geophysics II, J. Bartels, Ed., Encyclopedia of Physics, 48, Springer-Verlag, 1–154.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1979: Inertial instability and mesoscale convective systems. Part I: Linear theory of inertial instability in rotating, viscous fluids. J. Atmos. Sci., 36, 24252449, doi:10.1175/1520-0469(1979)036<2425:IIAMCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffiths, M., A. J. Thorpe, and K. A. Browning, 2000: Convective destabilization by a tropopause fold diagnosed using potential-vorticity inversion. Quart. J. Roy. Meteor. Soc., 126, 125144, doi:10.1002/qj.49712656207.

    • Search Google Scholar
    • Export Citation
  • Halcomb, C. E., and P. S. Market, 2003: Forcing, instability and equivalent potential vorticity in a Midwest USA convective snowstorm. Meteor. Appl., 10, 273280, doi:10.1017/S1350482703003074.

    • Search Google Scholar
    • Export Citation
  • Hayashi, H., M. Shiotani, and J. Gille, 2002: Horizontal wind disturbances induced by inertial instability in the equatorial middle atmosphere as seen in rocketsonde observations. J. Geophys. Res., 107, 4228, doi:10.1029/2001JD000922.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and Coauthors, 2008: Validation of ACE-FTS satellite data in the upper troposphere/lower stratosphere (UTLS) using non-coincident measurements. Atmos. Chem. Phys., 8, 14831499, doi:10.5194/acp-8-1483-2008.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and C. B. Leovy, 1986: Evolution of the zonal mean state in the equatorial middle atmosphere during October 1978–May 1979. J. Atmos. Sci., 43, 31593176, doi:10.1175/1520-0469(1986)043<3159:EOTZMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., C. B. Leovy, J. C. Gille, and P. L. Bailey, 1987: Quasi-stationary zonally asymmetric circulations in the equatorial lower mesosphere. J. Atmos. Sci., 44, 22192236, doi:10.1175/1520-0469(1987)044<2219:QSZACI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., M. L. Büker, and G. J. Tripoli, 1999: Influence of synoptic waves on column ozone during Arctic summer 1997. J. Geophys. Res., 104, 26 54726 563, doi:10.1029/1999JD900471.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., M. L. Büker, G. J. Tripoli, E. V. Browell, W. B. Grant, C. Hostetler, T. J. McGee, and J. F. Burris, 2003: Nonorographic generation of Arctic polar stratospheric clouds during December 1999. J. Geophys. Res., 108, 8325, doi:10.1029/2001JD001034.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., M. L. Büker, G. J. Tripoli, R. B. Pierce, J. A. Al-Saadi, E. V. Browell, and M. A. Avery, 2004: A modeling study of an East Asian convective complex during March 2001. J. Geophys. Res., 109, D15S14, doi:10.1029/2003JD004312.

    • Search Google Scholar
    • Export Citation
  • Hoggatt, B. D., and J. A. Knox, 1998: Non-hydrostatic simulation of unforecast convection in an intense mid-latitude anticyclone. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 5962.

  • Holton, J. R., 2006: An Introduction to Dynamic Meteorology. Academic Press, 535 pp.

  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys.,33, 403–439, doi:10.1029/95RG02097.

  • Homeyer, C. R., K. P. Bowman, L. L. Pan, M. A. Zondlo, and J. F. Bresch, 2011: Convective injection into stratospheric intrusions. J. Geophys. Res., 116, D23304, doi:10.1029/2011JD016724.

    • Search Google Scholar
    • Export Citation
  • Hoor, P., H. Fischer, L. Lange, J. Lelieveld, and D. Brunner, 2002: Seasonal variations of a mixing layer in the lowermost stratosphere as identified by the CO–O3 correlation from in situ measurements. J. Geophys. Res., 107, 4044, doi:10.1029/2000JD000289.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and A. J. Thorpe, 1992: The three-dimensional nature of ‘symmetric’ instability. Quart. J. Roy. Meteor. Soc., 118, 227258, doi:10.1002/qj.49711850404.

    • Search Google Scholar
    • Export Citation
  • Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407418, doi:10.1002/qj.934.

    • Search Google Scholar
    • Export Citation
  • Kittaka, C., and Coauthors, 2004: A three-dimensional regional modeling study of the impact of clouds on sulfate distributions during TRACE-P. J. Geophys. Res., 109, D15S11, doi:10.1029/2003JD004353.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, doi:10.1175/2009JCLI3333.1.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., 1997: Possible mechanisms of clear-air turbulence in strongly anticyclonic flows. Mon. Wea. Rev., 125, 12511259, doi:10.1175/1520-0493(1997)125<1251:PMOCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., 2003: Inertial instability. Encyclopedia of the Atmospheric Sciences, 1st ed. J. Holton, J. Pyle, and J. Curry, Eds., Academic Press, 1004–1013.

  • Knox, J. A., and V. L. Harvey, 2005: Global climatology of inertial instability and Rossby wave breaking in the stratosphere. J. Geophys. Res., 110, D06108, doi:10.1029/2004JD005068.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 38853908, doi:10.1175/JAS3574.1.

    • Search Google Scholar
    • Export Citation
  • Lang, A. A., 2011: The structure and evolution of lower stratospheric frontal zones.Ph. D. dissertation, University of Wisconsin–Madison, 106 pp. [Available from Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 1225 W. Dayton Street, Madison, WI 53706.]

  • Lang, A. A., and J. E. Martin, 2010: The influence of rotational frontogenesis and its associated shearwise vertical motions on the development of an upper-level front. Quart. J. Roy. Meteor. Soc., 136, 239252, doi:10.1002/qj.551.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and K.-K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104, 16021617, doi:10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, doi:10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241259, doi:10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley and Sons, 407 pp.

  • Martin, J. E., 2006: The role of shearwise and transverse quasigeostrophic vertical motions in the midlatitude cyclone life cycle. Mon. Wea. Rev., 134, 11741193, doi:10.1175/MWR3114.1.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, doi:10.1038/305593a0.

  • Montgomery, M. T., and B. F. Farrell, 1991: Moist surface frontogenesis associated with interior potential vorticity anomalies in a semigeostrophic model. J. Atmos. Sci., 48, 343368, doi:10.1175/1520-0469(1991)048<0343:MSFAWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morgan, M. C., 1999: Using piecewise potential vorticity inversion to diagnose frontogenesis. Part I: A partitioning of the Q vector applied to diagnosing surface frontogenesis and vertical motion. Mon. Wea. Rev., 127, 27962821, doi:10.1175/1520-0493(1999)127<2796:UPPVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D. J., 1993: Inertial instability and inertia–gravity wave generation in the midlatitude winter stratosphere. Preprints, Ninth Conf. on Atmospheric and Oceanic Waves and Stability, San Antonio, TX, Amer. Meteor. Soc., 96–97.

  • O’Sullivan, D. J., and M. H. Hitchman, 1992: Inertial instability and Rossby wave breaking in a numerical model. J. Atmos. Sci., 49, 9911002, doi:10.1175/1520-0469(1992)049<0991:IIARWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D. J., and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, doi:10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and Coauthors, 2007: Chemical behavior of the tropopause observed during the stratosphere–troposphere analyses of regional transport experiment. J. Geophys. Res., 112, D18110, doi:10.1029/2007JD008645.

    • Search Google Scholar
    • Export Citation
  • Pavelin, E., J. Whiteway, R. Busen, and J. Hacker, 2002: Airbourne observations of turbulence, mixing, and gravity waves in the tropopause region. J. Geophys. Res., 107, doi:10.1029/2001JD000775.

    • Search Google Scholar
    • Export Citation
  • Pokrandt, P. J., G. J. Tripoli, and D. D. Houghton, 1996: Processes leading to the formation of mesoscale waves in the Midwest cyclone of 15 December 1987. Mon. Wea. Rev., 124, 27262752, doi:10.1175/1520-0493(1996)124<2726:PLTTFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pomroy, H. R., and A. J. Thorpe, 2000: The evolution and dynamical role of reduced upper-tropospheric potential vorticity in Intensive Observing Period One of FASTEX. Mon. Wea. Rev., 128, 18171834, doi:10.1175/1520-0493(2000)128<1817:TEADRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., D. J. Seidel, and L. L. Pan, 2007: Observational characteristics of double tropopauses. J. Geophys. Res., 112, D07309, doi:10.1029/2006JD007904.

    • Search Google Scholar
    • Export Citation
  • Rayleigh, L., 1917: On the dynamics of revolving fluids. Proc. Roy. Soc. London, 93A, 148154.

  • Sato, K., and T. J. Dunkerton, 2002: Layered structure associated with low potential vorticity near the tropopause seen in high-resolution radiosondes over Japan. J. Atmos. Sci., 59, 27822800, doi:10.1175/1520-0469(2002)059<2782:LSAWLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1949: The significance of dynamic instability in atmospheric motions. Quart. J. Roy. Meteor. Soc., 75, 364374, doi:10.1002/qj.49707532604.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., H. Wernli, and L. Papritz, 2013: Warm conveyor belts in idealized moist baroclinic wave simulations. J. Atmos. Sci., 70, 627652, doi:10.1175/JAS-D-12-0147.1.

    • Search Google Scholar
    • Export Citation
  • Schoeffler, F. S., 2013: Large wildfire growth influenced by tropospheric and stratospheric dry slots in the United States. 17th Conf. on the Middle Atmosphere, Newport, RI, 5.1. [Available online at https://ams.confex.com/ams/19Fluid17Middle/webprogram/Paper225271.html.]

  • Schultz, D. M., and J. A. Knox, 2007: Banded convection caused by frontogenesis in a conditionally, symmetrically, and inertially unstable environment. Mon. Wea. Rev., 135, 20952110, doi:10.1175/MWR3400.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and D. M. Schultz, 2000: Inertial instability: Climatologies and possible relationship to severe weather predictability. Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., P4.17. [Available online at https://ams.confex.com/ams/WAF-NWP-MESO/techprogram/paper_22733.htm.]

  • Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2010: Convective snowbands downstream of the Rocky Mountains in an environment with conditional, dry symmetric, and inertial instabilities. Mon. Wea. Rev., 138, 44164438, doi:10.1175/2010MWR3334.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2015: Influence of terrain resolution on banded convection in the lee of the Rocky Mountains. Mon. Wea. Rev., 143, 13971414, doi:10.1175/MWR-D-14-00255.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1974: A multiple structured frontal zone-jet stream system as revealed by meteorologically instrumented aircraft. Mon. Wea. Rev., 102, 244253, doi:10.1175/1520-0493(1974)102<0244:AMSFZJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1978: Further evidence of the mesoscale and turbulent structure of upper level jet stream–frontal zone systems. Mon. Wea. Rev., 106, 11001111, doi:10.1175/1520-0493(1978)106<1100:FEOTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37, 9941004, doi:10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1981: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream–frontal zone systems. J. Atmos. Sci., 38, 954972, doi:10.1175/1520-0469(1981)038<0954:FAGFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1985: Dropwindsonde observations of an Icelandic low and a Greenland mountain-lee wave. Mon. Wea. Rev., 113, 680683, doi:10.1175/1520-0493(1985)113<0680:DOOAIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., T. Hampel, and A. J. Krueger, 1987: The Arctic tropopause fold. Mon. Wea. Rev., 115, 444454, doi:10.1175/1520-0493(1987)115<0444:TATF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and E. Bernard, 2013: Geostrophic turbulence near rapid changes in stratification. Phys. Fluids, 25, 046601, doi:10.1063/1.4799470.

    • Search Google Scholar
    • Export Citation
  • Stajner, I., and Coauthors, 2008: Assimilated ozone from EOS-Aura: Evaluation of the tropopause region and tropospheric columns. J. Geophys. Res., 113, D16S32, doi:10.1029/2007JD008863.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and P. E. Ciesielski, 1986: Inertial instability of horizontally sheared flow away from the equator. J. Atmos. Sci., 43, 28452856, doi:10.1175/1520-0469(1986)043<2845:IIOHSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and Coauthors, 2003: Stratosphere–troposphere exchange: A review, and what we have learned from STACCATO. J. Geophys. Res., 108, 8516, doi:10.1029/2002JD002490.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 666 pp.

  • Taylor, G. I., 1923: Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. Roy. Soc. London, 223A, 289343, doi:10.1098/rsta.1923.0008.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., 1992a: An explicit three-dimensional nonhydrostatic numerical simulation of a tropical cyclone. Meteor. Atmos. Phys., 49, 229254, doi:10.1007/BF01025409.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., 1992b: A nonhydrostatic numerical model designed to simulate scale interaction. Mon. Wea. Rev., 120, 13421359, doi:10.1175/1520-0493(1992)120<1342:ANMMDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and S. E. Koch, 1987: The synoptic and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115, 721729, doi:10.1175/1520-0493(1987)115<0721:TSSAPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteway, J. A., E. G. Pavelin, R. Busen, J. Hacker, and S. Vosper, 2003: Airborne measurements of gravity wave breaking at the tropopause. Geophys. Res. Lett., 30, 2070, doi:10.1029/2003GL018207.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 1998: A time-splitting scheme for the elastic equations incorporating second-order Runge–Kutta time differencing. Mon. Wea. Rev., 126, 19921999, doi:10.1175/1520-0493(1998)126<1992:ATSSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zahn, A., and Coauthors, 2000: Identification of extratropical two-way troposphere–stratosphere mixing based on CARIBIC measurements of O3, CO, and ultrafine particles. J. Geophys. Res., 105, 15271535, doi:10.1029/1999JD900759.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H.-R. Cho, 1992: The development of negative moist potential vorticity in the stratiform region of a simulated squall line. Mon. Wea. Rev., 120, 13221341, doi:10.1175/1520-0493(1992)120<1322:TDONMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zimet, T. K., J. E. Martin, and B. E. Potter, 2007: The influence of an upper-level frontal zone on the Mack Lake wildfire environment. Meteor. Appl., 14, 131147, doi:10.1002/met.14.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1281 885 207
PDF Downloads 408 55 1