• Allan, R. P., , and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, doi:10.1126/science.1160787.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., 2009: Convection parameterization. Proc. ECMWF Seminar on Parameterization of Subgrid Physical Processes, Reading, United Kingdom, ECMWF, 1–50.

  • Berg, W., , T. L’Ecuyer, , and C. Kummerow, 2006: Rainfall climate regimes: The relationship of TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, doi:10.1175/JAM2331.1.

    • Search Google Scholar
    • Export Citation
  • Binder, K., , and D. Heermann, 2010: Monte Carlo Simulation in Statistical Physics: An Introduction. 5th ed. Graduate Texts in Physics, Springer, 202 pp.

  • Bretherton, C. S., , M. E. Peters, , and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , J. C. Wyngaard, , and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and M. Wingo, 2009: Comparison of TRMM rain-rate retrievals in tropical cyclones. J. Meteor. Soc. Japan, 87A, 369380, doi:10.2151/jmsj.87A.369.

    • Search Google Scholar
    • Export Citation
  • Frenkel, Y., , A. J. Majda, , and B. Khouider, 2012: Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example. J. Atmos. Sci., 69, 10801105, doi:10.1175/JAS-D-11-0148.1.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., , E. A. Smith, , C. D. Kummerow, , T. Iguchi, , M. R. Farrar, , S. L. Durden, , M. Alves, , and W. S. Olson, 1997: The TRMM day-1 radar/radiometer combined rain-profiling algorithm. J. Meteor. Soc. Japan, 75, 799809.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., , and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA). J. Appl. Meteor. Climatol., 47, 778794, doi:10.1175/2007JAMC1635.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., , and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., , and J. D. Neelin, 2010: Temporal relations of column water vapor and tropical precipitation. J. Atmos. Sci., 67, 10911105, doi:10.1175/2009JAS3284.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ikai, J., , and K. Nakamura, 2003: Comparison of rain rates over the ocean derived from TRMM microwave imager and precipitation radar. J. Atmos. Oceanic Technol., 20, 17091726, doi:10.1175/1520-0426(2003)020<1709:CORROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Islam, T., , M. A. Rico-Ramirez, , D. Han, , P. K. Srivastava, , and A. M. Ishak, 2012: Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network. J. Atmos. Sol-Terr. Phys., 77, 194208, doi:10.1016/j.jastp.2012.01.001.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-H., , D.-B. Shin, , and C. Kummerow, 2013: Impacts of a priori databases using six WRF microphysics schemes on passive microwave rainfall retrievals. J. Atmos. Oceanic Technol., 30, 23672381, doi:10.1175/JTECH-D-12-00261.1.

    • Search Google Scholar
    • Export Citation
  • Krauss, L. M., , and P. Romanelli, 1990: Big bang nucleosynthesis—Predictions and uncertainties. Astrophys. J., 358, 4759, doi:10.1086/168962.

    • Search Google Scholar
    • Export Citation
  • Kuczera, G., , and E. Parent, 1998: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm. J. Hydrol., 211, 6985, doi:10.1016/S0022-1694(98)00198-X.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , S. Ringerud, , J. Crook, , D. Randel, , and W. Berg, 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., , T. Iguchi, , R. Oki, , and M. Kachi, 2002: Comparison of rainfall products derived from TRMM Microwave Imager and precipitation radar. J. Appl. Meteor., 41, 849862, doi:10.1175/1520-0450(2002)041<0849:CORPDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., , L. E. Back, , P. A. O’Gorman, , and K. A. Emanuel, 2009: A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett., 36, L16804, doi:10.1029/2009GL039667.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , O. Peters, , J. W. Lin, , K. Hales, , and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Philos. Trans. Roy. Soc. London, 366A, 25792604, doi:10.1098/rsta.2008.0056.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , O. Peters, , and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, doi:10.1175/2009JAS2962.1.

    • Search Google Scholar
    • Export Citation
  • Peters, O., , and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396, doi:10.1038/nphys314.

  • Peters, O., , and J. D. Neelin, 2009: Atmospheric convection as a continuous phase transition: Further evidence. Int. J. Mod. Phys., 23B, 54535465, doi:10.1142/S0217979209063778.

    • Search Google Scholar
    • Export Citation
  • Peters, O., , J. D. Neelin, , and S. W. Nesbitt, 2009: Mesoscale convective systems and critical clusters. J. Atmos. Sci., 66, 29132924, doi:10.1175/2008JAS2761.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898, doi:10.1002/qj.49712656406.

    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., , and F. J. Wentz, 2004: Uncertainties in sea surface temperature retrievals from space: Comparison of microwave and infrared observations from TRMM. J. Geophys. Res., 109, C12013, doi:10.1029/2003JC002247.

    • Search Google Scholar
    • Export Citation
  • Rittner, A. S. C., , and J. D. Reppy, 2006: Observation of classical rotational inertia and nonclassical supersolid signals in solid 4He below 250mk. Phys. Rev. Lett., 97, 165301, doi:10.1103/PhysRevLett.97.165301.

    • Search Google Scholar
    • Export Citation
  • Robert, C. P., , and G. Casella, 2004: Monte Carlo Statistical Methods. 2nd ed. Springer Texts in Statistics, Springer, 649 pp.

  • Rossow, W. B., , A. Mekonnen, , C. Pearl, , and W. Goncalves, 2013: Tropical precipitation extremes. J. Climate, 26, 14571466, doi:10.1175/JCLI-D-11-00725.1.

    • Search Google Scholar
    • Export Citation
  • Sahany, S., , J. D. Neelin, , K. Hales, , and R. B. Neale, 2012: Temperature-moisture dependence of the deep convective transition as a constraint on entrainment in climate models. J. Atmos. Sci., 69, 13401358, doi:10.1175/JAS-D-11-0164.1.

    • Search Google Scholar
    • Export Citation
  • Stanley, H. E., 1987: Introduction to Phase Transitions and Critical Phenomena. International Series of Monographs on Physics, Oxford University Press, 336 pp.

  • Stechmann, S. N., , and J. D. Neelin, 2011: A stochastic model for the transition to strong convection. J. Atmos. Sci., 68, 29552970, doi:10.1175/JAS-D-11-028.1.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., , and J. D. Neelin, 2014: First-passage-time prototypes for precipitation statistics. J. Atmos. Sci., 71, 32693291, doi:10.1175/JAS-D-13-0268.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Tang, L., , Y. Tian, , and X. Lin, 2014: Validation of precipitation retrievals over land from satellite-based passive microwave sensors. J. Geophys. Res. Atmos., 119, 4546–4567, doi:10.1002/2013JD020933.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 1996: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. 2nd ed. University Science Books, 327 pp.

  • Tian, Y., , G. J. Huffman, , R. F. Adler, , L. Tang, , M. Sapiano, , V. Maggioni, , and H. Wu, 2013: Modeling errors in daily precipitation measurements: Additive or multiplicative? Geophys. Res. Lett., 40, 20602065, doi:10.1002/grl.50320.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res., 102, 87038718, doi:10.1029/96JC01751.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 2006: Updates to TMI V04 ocean products. Remote Sensing Systems Rep. 093006, 2 pp.

  • Wentz, F. J., , and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55, 16131627, doi:10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., , and B. L. Fisher, 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237, doi:10.1175/2008JAMC1875.1.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., , and B. L. Fisher, 2009: Assessing the relative performance of microwave-based satellite rain-rate retrievals using TRMM ground validation data. J. Appl. Meteor. Climatol., 48, 10691099, doi:10.1175/2008JAMC2127.1.

    • Search Google Scholar
    • Export Citation
  • Yano, J. I., , C. H. Liu, , and M. W. Moncrieff, 2012: Self-organized criticality and homeostasis in atmospheric convective organization. J. Atmos. Sci., 69, 34493462, doi:10.1175/JAS-D-12-069.1.

    • Search Google Scholar
    • Export Citation
  • Yeomans, J. M., 1992: Statistical Mechanics of Phase Transitions. Oxford Science Publications, 168 pp.

  • Zagrodnik, J. P., , and H. Y. Jiang, 2013: Comparison of TRMM precipitation radar and microwave imager rainfall retrievals in tropical cyclone inner cores and rainbands. J. Geophys. Res. Atmos., 118, 2942, doi:10.1029/2012JD017919.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 10
PDF Downloads 7 7 5

Understanding the Influence of Measurement Uncertainty on the Atmospheric Transition in Rainfall and Column Water Vapor

View More View Less
  • 1 Climate Change Research Centre, and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia
© Get Permissions
Restricted access

Abstract

Measurement uncertainty plays a key role in understanding physical relationships. This is particularly the case near phase transitions where order parameters undergo fast changes and display large variability. Here the proposed atmospheric continuous phase transition is examined by analyzing uncertainty in rain-rate and column water vapor measurements from the Tropical Rainfall Measuring Mission and through an idealized error analysis. It is shown through both of these approaches that microwave rain-rate retrievals can mimic a continuous phase transition. This occurs because microwave retrievals of instantaneous rain rates have a suppressed range. This work also suggests that column water vapor noise may provide part of the plateau seen in the observational relationship. Using updated measurements, this work indicates that the atmosphere is unlikely to undergo a continuous phase transition in rain rate but, instead, contains much larger variability in rain rates at extreme column water vapor values than previously thought. This implies that the atmosphere transitions from a low-variance nonraining state to a high-variance raining state at extreme column water vapor values.

Corresponding author address: James B. Gilmore, Climate Change Research Centre, University of New South Wales, Level 4, Mathews Building, Sydney NSW 2052, Australia. E-mail: james.gilmore@unsw.edu.au

Abstract

Measurement uncertainty plays a key role in understanding physical relationships. This is particularly the case near phase transitions where order parameters undergo fast changes and display large variability. Here the proposed atmospheric continuous phase transition is examined by analyzing uncertainty in rain-rate and column water vapor measurements from the Tropical Rainfall Measuring Mission and through an idealized error analysis. It is shown through both of these approaches that microwave rain-rate retrievals can mimic a continuous phase transition. This occurs because microwave retrievals of instantaneous rain rates have a suppressed range. This work also suggests that column water vapor noise may provide part of the plateau seen in the observational relationship. Using updated measurements, this work indicates that the atmosphere is unlikely to undergo a continuous phase transition in rain rate but, instead, contains much larger variability in rain rates at extreme column water vapor values than previously thought. This implies that the atmosphere transitions from a low-variance nonraining state to a high-variance raining state at extreme column water vapor values.

Corresponding author address: James B. Gilmore, Climate Change Research Centre, University of New South Wales, Level 4, Mathews Building, Sydney NSW 2052, Australia. E-mail: james.gilmore@unsw.edu.au
Save