• Bakas, N. A., , and P. J. Ioannou, 2011: Structural stability theory of two-dimensional fluid flow under stochastic forcing. J. Fluid Mech.,682, 332–361, doi:10.1017/jfm.2011.228.

  • Bakas, N. A., , and P. J. Ioannou, 2013a: Emergence of large scale structure in barotropic β-plane turbulence. Phys. Rev. Lett.,110, 224501, doi:10.1103/PhysRevLett.110.224501.

  • Bakas, N. A., , and P. J. Ioannou, 2013b: On the mechanism underlying the spontaneous emergence of barotropic zonal jets. J. Atmos. Sci.,70, 2251–2271, doi:10.1175/JAS-D-12-0102.1.

  • Bakas, N. A., , and P. J. Ioannou, 2014: A theory for the emergence of coherent structures in beta-plane turbulence. J. Fluid Mech., 740, 312341, doi:10.1017/jfm.2013.663.

    • Search Google Scholar
    • Export Citation
  • Bernstein, J., 2009: Dynamics of turbulent jets in the atmosphere and ocean. Ph.D. thesis, Harvard University, 116 pp.

  • Bernstein, J., , and B. F. Farrell, 2010: Low frequency variability in a turbulent baroclinic jet: Eddy–mean flow interactions in a two-level model. J. Atmos. Sci., 67, 452467, doi:10.1175/2009JAS3170.1.

    • Search Google Scholar
    • Export Citation
  • Boland, E. J. D., , A. F. Thompson, , E. Shuckburgh, , and P. H. Haynes, 2012: The formation of nonzonal jets over sloped topography. J. Phys. Oceanogr., 42, 16351651, doi:10.1175/JPO-D-11-0152.1.

    • Search Google Scholar
    • Export Citation
  • Bouchet, F., , C. Nardini, , and T. Tangarife, 2013: Kinetic theory of jet dynamics in the stochastic barotropic and 2D Navier-Stokes equations. J. Stat. Phys., 153, 572625, doi:10.1007/s10955-013-0828-3.

    • Search Google Scholar
    • Export Citation
  • Carnevale, G. F., , and P. C. Martin, 1982: Field theoretic techniques in statistical fluid dynamics: With application to nonlinear wave dynamics. Geophys. Astrophys. Fluid Dyn., 20, 131164, doi:10.1080/03091928208209002.

    • Search Google Scholar
    • Export Citation
  • Connaughton, C. P., , B. T. Nadiga, , S. V. Nazarenko, , and B. E. Quinn, 2010: Modulational instability of Rossby and drift waves and generation of zonal jets. J. Fluid Mech., 654, 207231, doi:10.1017/S0022112010000510.

    • Search Google Scholar
    • Export Citation
  • Constantinou, N. C., , B. F. Farrell, , and P. J. Ioannou, 2014: Emergence and equilibration of jets in beta-plane turbulence: Applications of stochastic structural stability theory. J. Atmos. Sci., 71, 18181842, doi:10.1175/JAS-D-13-076.1.

    • Search Google Scholar
    • Export Citation
  • Danilov, S., , and D. Gurarie, 2004: Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids, 16, 25922603, doi:10.1063/1.1752928.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., 1996: Can quasigeostrophic turbulence be modeled stochastically? J. Atmos. Sci., 53, 16171633, doi:10.1175/1520-0469(1996)053<1617:CQTBMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., 2004: Stochastic models of quasigeostrophic turbulence. Surv. Geophys., 25, 107194, doi:10.1023/B:GEOP.0000028164.58516.b2.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., , and B. F. Farrell, 1996: The quasi-linear equilibration of a thermally mantained stochastically excited jet in a quasigeostrophic model. J. Atmos. Sci., 53, 17811797, doi:10.1175/1520-0469(1996)053<1781:TQLEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., , and A. Y. Hou, 1999: Empirical stochastic models for the dominant climate statistics of a general circulation model. J. Atmos. Sci., 56, 34363456, doi:10.1175/1520-0469(1999)056<3436:ESMFTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Di Nitto, G., , S. Espa, , and A. Cenedese, 2013: Simulating zonation in geophysical flows by laboratory experiments. Phys. Fluids,25, 086602, doi:10.1063/1.4817540.

  • Espa, S., , G. Di Nitto, , and A. Cenedese, 2010: The emergence of zonal jets in forced rotating shallow water turbulence: A laboratory study. Europhys. Lett., 92, 34006, doi:10.1209/0295-5075/92/34006.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., , and P. J. Ioannou, 1994: A theory for the statistical equilibrium energy spectrum and heat flux produced by transient baroclinic waves. J. Atmos. Sci., 51, 26852698, doi:10.1175/1520-0469(1994)051<2685:ATFTSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., , and P. J. Ioannou, 1995: Stochastic dynamics of the midlatitude atmospheric jet. J. Atmos. Sci., 52, 16421656, doi:10.1175/1520-0469(1995)052<1642:SDOTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., , and P. J. Ioannou, 2003: Structural stability of turbulent jets. J. Atmos. Sci., 60, 21012118, doi:10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., , and P. J. Ioannou, 2007: Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci., 64, 36523665, doi:10.1175/JAS4016.1.

    • Search Google Scholar
    • Export Citation
  • Galperin, B. H., , S. Sukoriansky, , and N. Dikovskaya, 2010: Geophysical flows with anisotropic turbulence and dispersive waves: flows with a β-effect. Ocean Dyn.,60, 427–441, doi:10.1007/s10236-010-0278-2.

  • Gill, A. E., 1974: The stability of planetary waves on an infinite beta-plane. Geophys. Astrophys. Fluid Dyn., 6, 2947, doi:10.1080/03091927409365786.

    • Search Google Scholar
    • Export Citation
  • Hinch, E. J., 1991: Perturbation Methods.Cambridge University Press, 176 pp.

  • Ingersoll, A. P., 1990: Atmospheric dynamics of the outer planets. Science, 248, 308315, doi:10.1126/science.248.4953.308.

  • Lee, Y., , and L. M. Smith, 2007: On the formation of geophysical and planetary zonal flows by near-resonant wave interactions. J. Fluid Mech., 576, 405424, doi:10.1017/S0022112006004381.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1972: Barotropic instability of Rossby wave motion. J. Atmos. Sci., 29, 258269, doi:10.1175/1520-0469(1972)029<0258:BIORWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marston, J. B., 2010: Statistics of the general circulation from cumulant expansions. Chaos,20, 041107, doi:10.1063/1.3490719.

  • Marston, J. B., 2012: Atmospheres as nonequilibrium condensed matter. Annu. Rev. Condens. Matter Phys., 3, 285310, doi:10.1146/annurev-conmatphys-020911-125114.

    • Search Google Scholar
    • Export Citation
  • Marston, J. B., , E. Conover, , and T. Schneider, 2008: Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci., 65, 19551966, doi:10.1175/2007JAS2510.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., , and T. Schneider, 2007: Recovery of atmospheric flow statistics in a general circulation model without nonlinear eddy-eddy interactions. Geophys. Res. Lett.,34, L22801, doi:10.1029/2007GL031779.

  • Parker, J. B., , and J. A. Krommes, 2013: Zonal flow as pattern formation. Phys. Plasmas,20, 100703, doi:10.1063/1.4828717.

  • Parker, J. B., , and J. A. Krommes, 2014: Generation of zonal flows through symmetry breaking of statistical homogeneity. New J. Phys.,16, 035006, doi:10.1088/1367-2630/16/3/035006.

  • Parker, J. B., , and J. A. Krommes, 2015: Zonal flow as pattern formation. Zonal Jets, B. Galperin and P. L. Read, Eds., Cambridge University Press, in press.

  • Pedlosky, J., 1992: Geophysical Fluid Dynamics. 2nd ed. Springer, 710 pp.

  • Read, P. L., , Y. H. Yamazaki, , S. R. Lewis, , P. D. Williams, , K. Miki-Yamazaki, , J. Sommeria, , H. Didelle, , and A. Fincham, 2004: Jupiter’s and Saturn’s convectively driven banded jets in the laboratory. Geophys. Res. Lett., 31, L22701, doi:10.1029/2004GL020106.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., , and W. R. Young, 2012: Zonostrophic instability. J. Atmos. Sci., 69, 16331656, doi:10.1175/JAS-D-11-0200.1.

  • Srinivasan, K., , and W. R. Young, 2014: Reynold stress and eddy difusivity of β-plane shear flows. J. Atmos. Sci., 71, 21692185, doi:10.1175/JAS-D-13-0246.1.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., , N. Dikovskaya, , and B. Galperin, 2008: Nonlinear waves in zonostrophic turbulence. Phys. Rev. Lett.,101, 178501, doi:10.1103/PhysRevLett.101.178501.

  • Tobias, S. M., , and J. B. Marston, 2013: Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett.,110, 104502, doi:10.1103/PhysRevLett.110.104502.

  • Vallis, G. K., , and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta-plane and over topography. J. Phys. Oceanogr., 23, 13461362, doi:10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vasavada, A. R., , and A. P. Showman, 2005: Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys., 68, 19351996, doi:10.1088/0034-4885/68/8/R06.

    • Search Google Scholar
    • Export Citation
  • Weeks, W. R., , Y. Trian, , J. S. Urbach, , K. Ide, , H. L. Swinney, , and M. Ghil, 1997: Transitions between blocked and zonal flows in a rotating annulus. Science, 278, 15981601, doi:10.1126/science.278.5343.1598.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., , and P. D. Sardeshmukh, 1998: A linear theory of extratropical synoptic eddy statistics. J. Atmos. Sci., 55, 237258, doi:10.1175/1520-0469(1998)055<0237:ALTOES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , and I. M. Held, 1999: A linear stochastic model of a GCM’s midlatitude storm tracks. J. Atmos. Sci., 56, 34163435, doi:10.1175/1520-0469(1999)056<3416:ALSMOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5 5 3
PDF Downloads 1 1 1

S3T Stability of the Homogeneous State of Barotropic Beta-Plane Turbulence

View More View Less
  • 1 Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
© Get Permissions
Restricted access

Abstract

Zonal jets and nonzonal large-scale flows are often present in forced–dissipative barotropic turbulence on a beta plane. The dynamics underlying the formation of both zonal and nonzonal coherent structures is investigated in this work within the statistical framework of stochastic structural stability theory (S3T). Previous S3T studies have shown that the homogeneous turbulent state undergoes a bifurcation at a critical parameter and becomes inhomogeneous with the emergence of zonal and/or large-scale nonzonal flows and that these statistical predictions of S3T are reflected in direct numerical simulations. In this paper, the dynamics underlying the S3T statistical instability of the homogeneous state as a function of parameters is studied. It is shown that, for weak planetary vorticity gradient β, both zonal jets and nonzonal large-scale structures form from upgradient momentum fluxes due to shearing of the eddies by the emerging infinitesimal flow. For large β, the dynamics of the S3T instability differs for zonal and nonzonal flows but in both the destabilizing vorticity fluxes decrease with increasing β. Shearing of the eddies by the mean flow continues to be the mechanism for the emergence of zonal jets while nonzonal large-scale flows emerge from resonant and near-resonant triad interactions between the large-scale flow and the stochastically forced eddies. The relation between the formation of large-scale structure through modulational instability and the S3T instability of the homogeneous state is also investigated and it is shown that the modulational instability results are subsumed by the S3T results.

Current affiliation: Department of Physics, University of Ioannina, Ioannina, Greece.

Corresponding author address: Navid Constantinou, University of Athens, Department of Physics, Section of Astrophysics, Astronomy and Mechanics, Building IV, Office 32, Panepistimiopolis, 15784 Zografos, Athens, Greece. E-mail: navidcon@phys.uoa.gr

Abstract

Zonal jets and nonzonal large-scale flows are often present in forced–dissipative barotropic turbulence on a beta plane. The dynamics underlying the formation of both zonal and nonzonal coherent structures is investigated in this work within the statistical framework of stochastic structural stability theory (S3T). Previous S3T studies have shown that the homogeneous turbulent state undergoes a bifurcation at a critical parameter and becomes inhomogeneous with the emergence of zonal and/or large-scale nonzonal flows and that these statistical predictions of S3T are reflected in direct numerical simulations. In this paper, the dynamics underlying the S3T statistical instability of the homogeneous state as a function of parameters is studied. It is shown that, for weak planetary vorticity gradient β, both zonal jets and nonzonal large-scale structures form from upgradient momentum fluxes due to shearing of the eddies by the emerging infinitesimal flow. For large β, the dynamics of the S3T instability differs for zonal and nonzonal flows but in both the destabilizing vorticity fluxes decrease with increasing β. Shearing of the eddies by the mean flow continues to be the mechanism for the emergence of zonal jets while nonzonal large-scale flows emerge from resonant and near-resonant triad interactions between the large-scale flow and the stochastically forced eddies. The relation between the formation of large-scale structure through modulational instability and the S3T instability of the homogeneous state is also investigated and it is shown that the modulational instability results are subsumed by the S3T results.

Current affiliation: Department of Physics, University of Ioannina, Ioannina, Greece.

Corresponding author address: Navid Constantinou, University of Athens, Department of Physics, Section of Astrophysics, Astronomy and Mechanics, Building IV, Office 32, Panepistimiopolis, 15784 Zografos, Athens, Greece. E-mail: navidcon@phys.uoa.gr
Save