• Augustine, J. A., , and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135, doi:10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and M. D. Parker, 2010: Observations of a squall line and its near environment using high-frequency rawinsonde launches during VORTEX2. Mon. Wea. Rev., 138, 40764097, doi:10.1175/2010MWR3359.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , J. C. Wyngaard, , and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chappell, C. F., 1986: Quasi-stationary convective events. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 289–309.

  • Coniglio, M. C., , and D. J. Stensrud, 2001: Simulation of a progressive derecho using composite initial conditions. Mon. Wea. Rev., 129, 15931616, doi:10.1175/1520-0493(2001)129<1593:SOAPDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 9971017, doi:10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., , J. H. Merritt, , and J. M. Fritsch, 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting, 11, 4146, doi:10.1175/1520-0434(1996)011<0041:PTMOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., , and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45, 36063624, doi:10.1175/1520-0469(1988)045<3606:TEOLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., , H. E. Brooks, , and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 36743683, doi:10.1175/JAS-D-14-0060.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , and P. S. Dailey, 1995: The temporal behavior of numerically simulated multicell-type storms. Part I. Modes of behavior. J. Atmos. Sci., 52, 20732095, doi:10.1175/1520-0469(1995)052<2073:TTBONS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., , and P.-H. Tan, 1998: The temporal behavior of numerically simulated multicell-type storms. Part II. The convective cell life cycle and cell regeneration. Mon. Wea. Rev., 126, 551577, doi:10.1175/1520-0493(1998)126<0551:TTBONS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • French, A. J., , and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408, doi:10.1175/2010JAS3329.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , M. I. Biggerstaff, , S. A. Rutledge, , and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619, doi:10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , B. F. Smull, , and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654, doi:10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keene, K. M., , and R. S. Schumacher, 2013: The bow and arrow mesoscale convective structure. Mon. Wea. Rev., 141, 16481672, doi:10.1175/MWR-D-12-00172.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , W. C. Skamarock, , and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 28972913, doi:10.1175/MWR3440.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., , and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A, 289307, doi:10.1111/j.2153-3490.1969.tb00444.x.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., , C. F. Chappell, , and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., , G. M. Lackmann, , and M. D. Parker, 2009: The role of momentum transport in the motion of a quasi-idealized mesoscale convective system. Mon. Wea. Rev., 137, 33163338, doi:10.1175/2009MWR2895.1.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., , S. B. Trier, , T. M. Weckwerth, , and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247271, doi:10.1175/2010MWR3422.1.

    • Search Google Scholar
    • Export Citation
  • Mercer, A. E., , C. M. Shafer, , C. A. Doswell, , L. M. Leslie, , and M. B. Richman, 2012: Synoptic composites of tornadic and nontornadic outbreaks. Mon. Wea. Rev., 140, 25902608, doi:10.1175/MWR-D-12-00029.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Moore, J. T., , F. H. Glass, , C. E. Graves, , S. M. Rochette, , and M. J. Singer, 2003: The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Wea. Forecasting, 18, 861878, doi:10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., , and M. S. Gilmore, 2012: Convective initiation in an idealized cloud model using an updraft nudging technique. Mon. Wea. Rev., 140, 36993705, doi:10.1175/MWR-D-12-00163.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2007: Simulated convective lines with parallel stratiform precipitation. Part I: An archetype for convection in along-line shear. J. Atmos. Sci., 64, 267288, doi:10.1175/JAS3853.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., , and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., , and R. H. Johnson, 2004a: Simulated convective lines with leading precipitation. Part I: Governing dynamics. J. Atmos. Sci., 61, 16371655, doi:10.1175/1520-0469(2004)061<1637:SCLWLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., , and R. H. Johnson, 2004b: Simulated convective lines with leading precipitation. Part II: Evolution and maintenance. J. Atmos. Sci., 61, 16561673, doi:10.1175/1520-0469(2004)061<1656:SCLWLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., , and R. H. Johnson, 2004c: Structures and dynamics of quasi-2D mesoscale convective systems. J. Atmos. Sci., 61, 545567, doi:10.1175/1520-0469(2004)061<0545:SADOQM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., , and P. J. Roebber, 2014: Synoptic control of heavy-rain-producing convective training episodes. Mon. Wea. Rev., 142, 24642482, doi:10.1175/MWR-D-13-00263.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., , and R. S. Schumacher, 2014: Objective categorization of heavy-rain-producing MCS synoptic types by rotated principal component analysis. Mon. Wea. Rev., 142, 17161737, doi:10.1175/MWR-D-13-00295.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., , and R. S. Schumacher, 2015: Mechanisms for organization and echo training in a flash-flood-producing mesoscale convective system. Mon. Wea. Rev., 143, 10561083, doi:10.1175/MWR-D-14-00070.1.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., , K. L. Swanson, , and J. K. Ghorai, 2008: Synoptic control of mesoscale precipitating systems in the Pacific Northwest. Mon. Wea. Rev., 136, 34653476, doi:10.1175/2008MWR2264.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , J. B. Klemp, , and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2009: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci., 66, 15431568, doi:10.1175/2008JAS2856.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., , and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, doi:10.1175/MWR2899.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., , and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, doi:10.1175/WAF900.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., , and R. H. Johnson, 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986, doi:10.1175/2008MWR2471.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 105 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Thompson, G., , P. R. Field, , R. M. Rasmussen, , and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., , C. A. Davis, , and D. A. Ahijevych, 2010: Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental United States. J. Atmos. Sci., 67, 10661090, doi:10.1175/2009JAS3247.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, doi:10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, doi:10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , C. Davis, , W. Wang, , K. W. Manning, , and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW Model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 6
PDF Downloads 12 12 8

The Simulated Structure and Evolution of a Quasi-Idealized Warm-Season Convective System with a Training Convective Line

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

This study details the development and use of an idealized modeling framework to simulate a quasi-stationary heavy-rain-producing mesoscale convective system (MCS). A 36-h composite progression of atmospheric fields computed from 26 observed warm-season heavy-rain-producing training line/adjoining stratiform (TL/AS) MCSs was used as initial and lateral boundary conditions for a numerical simulation of this MCS archetype.

A realistic TL/AS MCS initiated and evolved within a simulated mesoscale environment that featured a low-level jet terminus, maximized low-level warm-air advection, and an elevated maximum in convective available potential energy. The first stage of MCS evolution featured an eastward-moving trailing-stratiform-type MCS that generated a surface cold pool. The initial system was followed by rearward off-boundary development, where a new line of convective cells simultaneously redeveloped north of the surface cold pool boundary. Backbuilding persisted on the western end of the new line, with individual convective cells training over a fixed geographic region. The final stage was characterized by a deepening and southward surge of the cold pool, accompanied by the weakening and slow southward movement of the training line. The low-level vertical wind shear profile favored kinematic lifting along the southeastern cold pool flank over the southwestern flank, potentially explaining why convection propagated with (did not propagate with) the former (latter) outflow boundaries.

The morphological features of the simulated MCS are common among observed cases and may, therefore, be generalizable. These results suggest that they are emergent from fundamental features of the large-scale environment, such as persistent regional low-level lifting, and with the vertical environmental wind profile characteristic to TL/AS systems.

Corresponding author address: John M. Peters, Department of Atmospheric Science, Colorado State University, 200 West Lake Street, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: jpeters3@atmos.colostate.edu

Abstract

This study details the development and use of an idealized modeling framework to simulate a quasi-stationary heavy-rain-producing mesoscale convective system (MCS). A 36-h composite progression of atmospheric fields computed from 26 observed warm-season heavy-rain-producing training line/adjoining stratiform (TL/AS) MCSs was used as initial and lateral boundary conditions for a numerical simulation of this MCS archetype.

A realistic TL/AS MCS initiated and evolved within a simulated mesoscale environment that featured a low-level jet terminus, maximized low-level warm-air advection, and an elevated maximum in convective available potential energy. The first stage of MCS evolution featured an eastward-moving trailing-stratiform-type MCS that generated a surface cold pool. The initial system was followed by rearward off-boundary development, where a new line of convective cells simultaneously redeveloped north of the surface cold pool boundary. Backbuilding persisted on the western end of the new line, with individual convective cells training over a fixed geographic region. The final stage was characterized by a deepening and southward surge of the cold pool, accompanied by the weakening and slow southward movement of the training line. The low-level vertical wind shear profile favored kinematic lifting along the southeastern cold pool flank over the southwestern flank, potentially explaining why convection propagated with (did not propagate with) the former (latter) outflow boundaries.

The morphological features of the simulated MCS are common among observed cases and may, therefore, be generalizable. These results suggest that they are emergent from fundamental features of the large-scale environment, such as persistent regional low-level lifting, and with the vertical environmental wind profile characteristic to TL/AS systems.

Corresponding author address: John M. Peters, Department of Atmospheric Science, Colorado State University, 200 West Lake Street, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: jpeters3@atmos.colostate.edu
Save