Annular Mode Variability of the Atmospheric Meridional Energy Transport and Circulation

Ray Yamada Courant Institute of Mathematical Sciences, New York University, New York, New York

Search for other papers by Ray Yamada in
Current site
Google Scholar
PubMed
Close
and
Olivier Pauluis Courant Institute of Mathematical Sciences, New York University, New York, New York, and NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Search for other papers by Olivier Pauluis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Month-to-month variability in the meridional atmospheric energy transport is analyzed in the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis for 1979–2012. The meridional transport of moist static energy (MSE) is composited onto the high and low phases of the northern and southern annular modes (NAM and SAM). While the high phase of the NAM and SAM is known to involve a poleward shift in the midlatitude storm track and jet, it is shown here that the distribution of poleward MSE transport shifts equatorward. This change is explained by examining the variability of the underlying meridional circulation. In particular, changes in the mass transport averaged on dry and moist static energy levels are considered. These circulations have an advantage over the conventional Eulerian circulation for explaining the total energy transport. They are computed using the statistical transformed Eulerian-mean (STEM) formulation, which provides a decomposition of the circulation into Eulerian-mean and eddy-driven components. The equatorward shift in the MSE transport is largely explained by a poleward shift of the Ferrel cell, while changes in the eddy-driven circulation have a comparatively small effect on the energy transport. The changes in the residual circulation and jet are shown to be consistent through momentum balance arguments. Mean-eddy feedback mechanisms that drive and sustain the annular modes are discussed at the end as a possible explanation for why the changes in the eddy-driven circulation are weak compared to the changes in the Eulerian circulation.

Corresponding author address: Ray Yamada, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012. E-mail: yamada@cims.nyu.edu

Abstract

Month-to-month variability in the meridional atmospheric energy transport is analyzed in the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis for 1979–2012. The meridional transport of moist static energy (MSE) is composited onto the high and low phases of the northern and southern annular modes (NAM and SAM). While the high phase of the NAM and SAM is known to involve a poleward shift in the midlatitude storm track and jet, it is shown here that the distribution of poleward MSE transport shifts equatorward. This change is explained by examining the variability of the underlying meridional circulation. In particular, changes in the mass transport averaged on dry and moist static energy levels are considered. These circulations have an advantage over the conventional Eulerian circulation for explaining the total energy transport. They are computed using the statistical transformed Eulerian-mean (STEM) formulation, which provides a decomposition of the circulation into Eulerian-mean and eddy-driven components. The equatorward shift in the MSE transport is largely explained by a poleward shift of the Ferrel cell, while changes in the eddy-driven circulation have a comparatively small effect on the energy transport. The changes in the residual circulation and jet are shown to be consistent through momentum balance arguments. Mean-eddy feedback mechanisms that drive and sustain the annular modes are discussed at the end as a possible explanation for why the changes in the eddy-driven circulation are weak compared to the changes in the Eulerian circulation.

Corresponding author address: Ray Yamada, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012. E-mail: yamada@cims.nyu.edu
Save
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmospheric Dynamics. Academic Press, 489 pp.

  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, doi:10.1175/JAS3695.1.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and J. Nilsson, 2011: Analysis of the meridional energy transport by atmospheric overturning circulations. J. Atmos. Sci., 68, 18061820, doi:10.1175/2010JAS3493.1.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855874, doi:10.1175/2007JAS2227.1.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., and D. L. Hartmann, 2007: Zonal jet structure and the leading mode of variability. J. Climate, 20, 51495163, doi:10.1175/JCLI4279.1.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S., and S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55, 30773086, doi:10.1175/1520-0469(1998)055<3077:ITAZID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 13031315, doi:10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McInyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841, doi:10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and E. Shuckburgh, 2000: Effective diffusivity as a diagnostic of atmospheric transport: 2. Troposphere and lower stratosphere. J. Geophys. Res., 105, 22 79522 810, doi:10.1029/2000JD900092.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1990: The role of transient eddies in low-frequency zonal variations of the Southern Hemisphere circulation. Tellus, 42A, 4150, doi:10.1034/j.1600-0870.1990.00005.x.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 27182743, doi:10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 31333136, doi:10.1029/1999GL010478.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429, doi:10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy-zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy-zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 12121227, doi:10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P., and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26, 16551660, doi:10.1175/1520-0485(1996)026<1655:IAATRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 10751078, doi:10.1126/science.1159649.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2010: The global atmospheric circulation in moist isentropic coordinates. J. Climate, 23, 30773093, doi:10.1175/2009JCLI2789.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., T. Shaw, and F. Laliberté, 2011: A statistical generalization of the transformed Eulerian-mean circulation for an arbitrary vertical coordinate system. J. Atmos. Sci., 68, 17661783, doi:10.1175/2011JAS3711.1.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. AIP Press, 520 pp.

  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, doi:10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1991: The dynamics of the zonal index in a simple model of the atmosphere. Tellus, 43A, 295305, doi:10.1034/j.1600-0870.1991.t01-4-00005.x.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57, 415422, doi:10.1175/1520-0469(2000)057<0415:ABMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and E. A. Barnes, 2014: Periodic variability in the large-scale Southern Hemisphere atmospheric circulation. Science, 343, 641645, doi:10.1126/science.1247660.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. D. Woodworth, 2014: Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci., 71, 14801493, doi:10.1175/JAS-D-13-0185.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and Y. Li, 2015: Baroclinic and barotropic annular variability in the Northern Hemisphere. J. Atmos. Sci., 72, 11171136, doi:10.1175/JAS-D-14-0104.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Vallis, G. K., E. P. Gerber, P. J. Kushner, and B. J. Cash, 2004: A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61, 264280, doi:10.1175/1520-0469(2004)061<0264:AMASDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 14711479, doi:10.1175/1520-0493(1989)117<1471:ITTACU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., and D. L. Hartmann, 1993: Zonal flow vacillation and eddy forcing in a simple GCM of the atmosphere. J. Atmos. Sci., 50, 32443259, doi:10.1175/1520-0469(1993)050<3244:ZFVAEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2655 2344 965
PDF Downloads 340 74 5