• Alexander, M. J., , S. D. Eckermann, , D. Broutman, , and J. Ma, 2009: Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys. Res. Lett., 36, L12816, doi:10.1029/2009GL038587.

    • Search Google Scholar
    • Export Citation
  • Añel, J. A., , J. C. Antuña, , L. de la Torre, , J. M. Castanheira, , and L. Gimeno, 2008: Climatological features of global multiple tropopause events. J. Geophys. Res., 113, D00B08, doi:10.1029/2007JD009697.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., , M. J. Alexander, , and J. R. Holton, 2004: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61, 324–337, doi:10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berthet, G., , J. G. Esler, , and P. H. Haynes, 2007: A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere. J. Geophys. Res., 112, D18102, doi:10.1029/2006JD008295.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci.,67, 2582–2600, doi:10.1175/2010JAS3287.1.

  • Bühler, O., , and M. E. McIntyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 6795, doi:10.1017/S0022112005004374.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., , R. S. Hipskind, , W. L. Starr, , J. F. Vedder, , S. E. Gaines, , D. Kley, , and K. K. Kelly, 1991: Irreversible transport in the stratosphere by internal waves of short vertical wavelength. J. Geophys. Res., 96, 17 433–17 452, doi:10.1029/91JD01362.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., , and W. K. Hocking, 1989: Effect of superposition on measurements of atmospheric gravity waves: A cautionary note and some reinterpretations. J. Geophys. Res.,94, 6333–6339, doi:10.1029/88JD03916.

  • Eyring, V., , T. G. Shepherd, , and D. W. Waugh, Eds., 2010: SPARC CCMVal report on the evaluation of chemistry–climate models. SPARC Tech. Rep. 5, WCRP-132, WMO/TD-1526, 434 pp. [Available online at http://www.atmosp.physics.utoronto.ca/SPARC/ccmval_final/.]

  • Gal-Chen, T., , and R. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J. Comput. Phys., 17, 209228, doi:10.1016/0021-9991(75)90037-6.

    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and Coauthors, 2011: New gravity wave treatments for GISS climate models. J. Climate, 24, 39894002, doi:10.1175/2011JCLI4013.1.

    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and Coauthors, 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 6383–6405, doi:10.1175/JCLI-D-12-00545.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , P. Hoor, , L. L. Pan, , W. J. Randel, , M. I. Hegglin, , and T. Birner, 2011: The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49, RG3003, doi:10.1029/2011RG000355.

    • Search Google Scholar
    • Export Citation
  • Guest, F., , M. Reeder, , C. Marks, , and D. Karoly, 2000: Inertia–gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci., 57, 737752, doi:10.1175/1520-0469(2000)057<0737:IGWOIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , and E. Shuckburgh, 2000: Effective diffusivity as a diagnostic of atmospheric transport: 2. Troposphere and lower stratosphere. J. Geophys. Res., 105, 22 795–22 810, doi:10.1029/2000JD900092.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., , C. Souprayen, , and A. Hauchecorne, 2001: Observation and backward trajectory of an inertio–gravity wave in the lower stratosphere. Ann. Geophys., 19, 11411155, doi:10.5194/angeo-19-1141-2001.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., , G. Boccara, , R. A. Vincent, , F. Vial, , and P. Cocquerez, 2008: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. J. Atmos. Sci., 65, 30563070, doi:10.1175/2008JAS2710.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Keyser, D. A., , and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452499, doi:10.1175/1520-0493(1986)114<0452:AROTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 21632169, doi:10.1175/MWR-D-10-05046.1.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 38853908, doi:10.1175/JAS3574.1.

    • Search Google Scholar
    • Export Citation
  • Kohma, M., , and K. Sato, 2011: The effects of atmospheric waves on the amounts of polar stratospheric clouds. Atmos. Chem. Phys., 11, 11 53511 552, doi:10.5194/acp-11-11535-2011.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., , A. O. Langford, , and M. H. Proffitt, 1996: Cross-tropopause mixing of ozone through gravity wave breaking: Observation and modeling. J. Geophys. Res., 101, 22 96922 976, doi:10.1029/96JD02442.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , T. G. Shepherd, , S. Polavarapu, , and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802818, doi:10.1175/JAS-D-11-0159.1.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , M. Satoh, , T. Nasuno, , A. T. Noda, , and K. Oouchi, 2007: A Madden–Julian Oscillation event simulated by a global cloud-resolving model. Science, 318, 17631765, doi:10.1126/science.1148443.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2004: An improved Mellor–Yamada Level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Olsen, M. A., , A. R. Douglass, , P. A. Newman, , J. C. Gille, , B. Nardi, , V. A. Yudin, , and R. Khosravi, 2008: HIRDLS observations and simulation of a lower stratospheric intrusion of tropical air to high latitudes. Geophys. Res. Lett., 35, L21813, doi:10.1029/2008GL035514.

    • Search Google Scholar
    • Export Citation
  • Olsen, M. A., , A. R. Douglass, , M. R. Schoeberl, , J. M. Rodriquez, , and Y. Yoshida, 2010: Interannual variability of ozone in the winter lower stratosphere and the relationship to lamina and irreversible transport. J. Geophys. Res.,115, D15305, doi:10.1029/2009JD013004.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D. J., , and T. J. Dunkerton, 1995: Generation of inertia–gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52, 36953716, doi:10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and Coauthors, 2009: Tropospheric intrusions associated with the secondary tropopause. J. Geophys. Res., 114, D10302, doi:10.1029/2008JD011374.

    • Search Google Scholar
    • Export Citation
  • Pavelin, E., , J. Whiteway, , and G. Vaughan, 2001: Observation of gravity wave generation and breaking in the lowermost stratosphere. J. Geophys. Res., 106, 51735179, doi:10.1029/2000JD900480.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer, 128 pp.

  • Peevey, T. R., , J. C. Gille, , C. R. Homeyer, , and G. L. Manney, 2014: The double tropopause and its dynamical relationship to the tropopause inversion layer in storm track regions. J. Geophys. Res. Atmos., 119, 10 19410 212, doi:10.1002/2014JD021808.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2005: Gravity waves excited by jets: Propagation versus generation. Geophys. Res. Lett., 32, L18802, doi:10.1029/2005GL023730.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , A. Hertzog, , and L. Guez, 2013: Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quart. J. Roy. Meteor. Soc., 139, 101118, doi:10.1002/qj.1965.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , D. J. Seidel, , and L. L. Pan, 2007: Observational characteristics of double tropopauses. J. Geophys. Res.,112, D07309, doi:10.1029/2006JD007904.

  • Rao, T. N., , J. Arvelius, , and S. Kirkwood, 2008: Climatology of tropopause folds over a European Arctic station (Esrange). J. Geophys. Res., 113, D00B03, doi:10.1029/2007JD009638.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., , F. Sassi, , and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, doi:10.1175/2009JAS3112.1.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , and M. Yamada, 1994: Vertical structure of atmospheric gravity waves revealed by the wavelet analysis. J. Geophys. Res.,99, 20 623–20 631, doi:10.1029/94JD01818.

  • Sato, K., , and M. Yoshiki, 2008: Gravity wave generation around the polar vortex in the stratosphere revealed by 3-hourly radiosonde observations at Syowa Station. J. Atmos. Sci., 65, 37193735, doi:10.1175/2008JAS2539.1.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , D. J. O'Sullivan, , and T. J. Dunkerton, 1997: Low-frequency inertia-gravity waves in the stratosphere revealed by three-week continuous observation with the MU radar. Geophys. Res. Lett., 24, 17391742.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , S. Watanabe, , Y. Kawatani, , Y. Tomikawa, , K. Miyazaki, , and M. Takahashi, 2009: On the origins of mesospheric gravity waves. Geophys. Res. Lett., 36, L19801, doi:10.1029/2009GL039908.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , S. Tateno, , S. Watanabe, , and Y. Kawatani, 2012: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J. Atmos. Sci., 69, 13781396, doi:10.1175/JAS-D-11-0101.1.

    • Search Google Scholar
    • Export Citation
  • Sato, K., and Coauthors, 2014: Program of the Antarctic Syowa MST/IS Radar (PANSY). J. Atmos. Sol.-Terr. Phys.,118, 2–15, doi:10.1016/j.jastp.2013.08.022.

  • Satoh, M., , T. Matsuno, , H. Tomita, , H. Miura, , T. Nasuno, , and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 3486–3514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Schär, C., , D. Leuenberger, , O. Fuhrer, , D. Lüthi, , and C. Girard, 2002: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 24592480, doi:10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmidt, T., , G. Beyerle, , S. Heise, , J. Wickert, , and M. Rothacher, 2006: A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC-C. Geophys. Res. Lett., 33, L04808, doi:10.1029/2005GL024600.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667682, doi:10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shibata, T., , K. Sato, , H. Kobayashi, , M. Yabuki, , and M. Shiobara, 2003: Antarctic polar stratospheric clouds under temperature perturbation by nonorogaphic inertia gravity waves observed by micropulse lidar at Syowa Station. J. Geophys. Res., 108, 4105, doi:10.1029/2002JD002713.

    • Search Google Scholar
    • Export Citation
  • Stolarski, R. S., , A. R. Douglass, , M. Gupta, , P. A. Newman, , S. Pawson, , M. R. Schoeberl, , and J. E. Nielsen, 2006: An ozone increase in the Antarctic summer stratosphere: A dynamical response to the ozone hole. Geophys. Res. Lett., 33, L21805, doi:10.1029/2006GL026820.

    • Search Google Scholar
    • Export Citation
  • Tomikawa, Y., , Y. Nishimura, , and T. Yamanouchi, 2009: Characteristics of tropopause and tropopause inversion layer in the polar region. SOLA,5, 141–144, doi:10.2151/sola.2009-036.

  • Tomita, H., , H. Miura, , S. Iga, , T. Nasuno, , and M. Satoh, 2005: A global could-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32, L08805, doi:10.1029/2005GL022459.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48, 21592178, doi:10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vaughan, G., , and R. M. Worthington, 2007: Inertia–gravity waves observed by the UK MST radar. Quart. J. Roy. Meteor. Soc., 133, 179188, doi:10.1002/qj.142.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., , and I. M. Reid, 1983: HF Doppler measurements of mesospheric gravity wave momentum fluxes. J. Atmos. Sci., 40, 13211333, doi:10.1175/1520-0469(1983)040<1321:HDMOMG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vogel, B., and Coauthors, 2011: Transport pathways and signatures of mixing in the extratropical tropopause region derived from Lagrangian model simulations. J. Geophys. Res.,116, D05306, doi:10.1029/2010JD014876.

  • Watanabe, S., , Y. Kawatani, , Y. Tomikawa, , K. Miyazaki, , M. Takahashi, , and K. Sato, 2008: General aspects of a T213L256 middle atmosphere general circulation model. J. Geophys. Res.,113, D12110, doi:10.1029/2008JD010026.

  • Wilcox, L. J., , B. J. Hoskins, , and K. P. Shine, 2012: A global blended tropopause based on ERA data. Part I: Climatology. Quart. J. Roy. Meteor. Soc., 138, 561–575, doi:10.1002/qj.951.

    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology—A three-dimensional science. WMO Bull., 6, 134138.

  • Yoshiki, M., , and K. Sato, 2000: A statistical study of gravity waves in the polar regions based on operational radiosonde data. J. Geophys. Res., 105, 17 99518 011, doi:10.1029/2000JD900204.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet–front systems. J. Atmos. Sci., 61, 440457, doi:10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , C. A. Davis, , M. L. Kaplan, , and S. E. Koch, 2001: Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the East Coast of the United States. Quart. J. Roy. Meteor. Soc., 127, 22092245, doi:10.1002/qj.49712757702.

    • Search Google Scholar
    • Export Citation
  • Zülicke, C., , and D. Peters, 2006: Simulation of inertia–gravity waves in a poleward-breaking Rossby wave. J. Atmos. Sci., 63, 32533276, doi:10.1175/JAS3805.1.

    • Search Google Scholar
    • Export Citation
  • Zülicke, C., , and D. Peters, 2008: Parameterization of strong stratospheric inertia–gravity waves forced by poleward-breaking Rossby waves. Mon. Wea. Rev., 136, 98119, doi:10.1175/2007MWR2060.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 15
PDF Downloads 26 26 13

A Study of Multiple Tropopause Structures Caused by Inertia–Gravity Waves in the Antarctic

View More View Less
  • 1 Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
  • 2 National Institute of Polar Research, and Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan
  • 3 Department of Communications and Computer Engineering, Kyoto University, Kyoto, Japan
© Get Permissions
Restricted access

Abstract

Multiple tropopauses (MTs) defined by the World Meteorological Organization are frequently detected from autumn to spring at Syowa Station (69.0°S, 39.6°E). The dynamical mechanism of MT events was examined by observations of the first mesosphere–stratosphere–troposphere (MST) radar in the Antarctic, the Program of the Antarctic Syowa MST/Incoherent Scatter (IS) Radar (PANSY), and of radiosondes on 8–11 April 2013.

The MT structure above the first tropopause is composed of strong temperature fluctuations. By a detailed analysis of observed three-dimensional wind and temperature fluctuation components, it is shown that the phase and amplitude relations between these components are consistent with the theoretical characteristics of linear inertia–gravity waves (IGWs).

Numerical simulations were performed by using a nonhydrostatic model. The simulated MT structures and IGW parameters agree well with the observation. In the analysis using the numerical simulation data, it is seen that IGWs were generated around 65°S, 15°E and around 70°S, 15°E, propagated eastward, and reached the region above Syowa Station when the MT event was observed. These IGWs were likely radiated spontaneously from the upper-tropospheric flow around 65°S, 15°E and were forced by strong southerly surface winds over steep topography (70°S, 15°E). The MT occurrence is attributable to strong IGWs and the low mean static stability in the polar winter lower stratosphere.

It is also shown that nonorographic gravity waves associated with the tropopause folding event contribute to 40% of the momentum fluxes, as shown by a gravity wave–resolving general circulation model in the lower stratosphere around 65°S. This result indicates that they are one of the key components for solving the cold-bias problem found in most climate models.

Corresponding author address: Ryosuke Shibuya, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail: shibuya@eps.s.u-tokyo.ac.jp

Abstract

Multiple tropopauses (MTs) defined by the World Meteorological Organization are frequently detected from autumn to spring at Syowa Station (69.0°S, 39.6°E). The dynamical mechanism of MT events was examined by observations of the first mesosphere–stratosphere–troposphere (MST) radar in the Antarctic, the Program of the Antarctic Syowa MST/Incoherent Scatter (IS) Radar (PANSY), and of radiosondes on 8–11 April 2013.

The MT structure above the first tropopause is composed of strong temperature fluctuations. By a detailed analysis of observed three-dimensional wind and temperature fluctuation components, it is shown that the phase and amplitude relations between these components are consistent with the theoretical characteristics of linear inertia–gravity waves (IGWs).

Numerical simulations were performed by using a nonhydrostatic model. The simulated MT structures and IGW parameters agree well with the observation. In the analysis using the numerical simulation data, it is seen that IGWs were generated around 65°S, 15°E and around 70°S, 15°E, propagated eastward, and reached the region above Syowa Station when the MT event was observed. These IGWs were likely radiated spontaneously from the upper-tropospheric flow around 65°S, 15°E and were forced by strong southerly surface winds over steep topography (70°S, 15°E). The MT occurrence is attributable to strong IGWs and the low mean static stability in the polar winter lower stratosphere.

It is also shown that nonorographic gravity waves associated with the tropopause folding event contribute to 40% of the momentum fluxes, as shown by a gravity wave–resolving general circulation model in the lower stratosphere around 65°S. This result indicates that they are one of the key components for solving the cold-bias problem found in most climate models.

Corresponding author address: Ryosuke Shibuya, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail: shibuya@eps.s.u-tokyo.ac.jp
Save