• André, J. C., , G. De Moor, , P. Lacarrère, , G. Therry, , and R. du Vachat, 1978: Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. J. Atmos. Sci., 35, 18611883, doi:10.1175/1520-0469(1978)035<1861:MTHEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. I., , C. W. Fairall, , P. S. Guest, , and P. O. G. Persson, 1999: An overview of the SHEBA atmospheric surface flux program. Preprints, 13th Symp. on Boundary Layers and Turbulence, Dallas, TX, Amer. Meteor. Soc., 550–555.

  • Ansorge, C., , and J. P. Mellado, 2014: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound.-Layer Meteor., 153, 89116, doi:10.1007/s10546-014-9941-3.

    • Search Google Scholar
    • Export Citation
  • Apsley, D. D., , and I. P. Castro, 1997: A limited-length-scale k-ε model for the neutral and stably-stratified atmospheric boundary layer. Bound.-Layer Meteor., 83, 7598, doi:10.1023/A:1000252210512.

    • Search Google Scholar
    • Export Citation
  • Armenio, V., , and S. Sakar, 2002: An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech., 459, 142, doi:10.1017/S0022112002007851.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., , R. K. Newsom, , J. K. Lundquist, , Y. L. Pichugina, , R. L. Coulter, , and L. Mahrt, 2002: Nocturnal low-level jet characteristics on Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, doi:10.1023/A:1019992330866.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, doi:10.1007/s10546-004-2820-6.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Academy of Arts and Sciences, 287–304.

  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchanges in a neutral atmosphere. J. Geophys. Res., 67, 30953102, doi:10.1029/JZ067i008p03095.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., , and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35, 14271440, doi:10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., , J. C. Wyngaard, , Y. Izumi, , and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., , Y. Cheng, , A. M. Howard, , and I. N. Esau, 2008: Stably stratified flows: A model with no Ri(cr). J. Atmos. Sci., 65, 24372447, doi:10.1175/2007JAS2470.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., , V. M. Canuto, , and A. M. Howard, 2002: An improved model for the turbulent PBL. J. Atmos. Sci., 59, 15501565, doi:10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corrsin, A., 1958: Local isotropy in turbulent shear flow. NACA Research Memo. 58B11, 15 pp. [Available online at http://naca.central.cranfield.ac.uk/reports/1958/naca-rm-58b11.pdf.]

  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273303, doi:10.1007/s10546-005-3780-1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1976: Clear and cloud-capped mixed layers—Their numerical simulation, structure and growth and parameterizations. Seminars on the Treatment of the Boundary Layer in Numerical Weather Prediction, European Centre for Medium Range Weather Forecasts, 234–284.

  • Delage, Y., 1974: A numerical study of the nocturnal atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 100, 351364, doi:10.1002/qj.49710042507.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, H., 1994: A balanced approach to stable boundary layer dynamics. J. Atmos. Sci., 51, 34863504, doi:10.1175/1520-0469(1994)051<3486:AATSBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Detering, H. W., , and D. Etling, 1985: Application of the E-ε turbulence model to the atmospheric boundary layer. Bound.-Layer Meteor., 33, 113133, doi:10.1007/BF00123386.

    • Search Google Scholar
    • Export Citation
  • Dougherty, J. P., 1961: The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys., 21, 210213, doi:10.1016/0021-9169(61)90116-7.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., , H. van Dop, , and W. H. Kohsiek, 1978: Meteorological observations on the 213 m mast at Cabauw in the Netherlands. Preprints, Fourth Symp. on Meteorological Observations and Instrumentation, Denver, CO, Amer. Meteor. Soc., 4146.

  • Duynkerke, P. G., , and G. M. Driedonks, 1987: A model for the turbulent structure of the stratocumulus-topped atmospheric boundary layer. J. Atmos. Sci., 44, 4364, doi:10.1175/1520-0469(1987)044<0043:AMFTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., , A. Sukoriansky, , and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, 6569, doi:10.1002/asl.153.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1982: Observations in the nocturnal boundary layer. Bound.-Layer Meteor., 22, 2148, doi:10.1007/BF00128054.

  • Gerz, T., , U. Schumann, , and S. E. Elghobashi, 1989: Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech., 200, 563594, doi:10.1017/S0022112089000765.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., , E. L. Andreas, , C. W. Fairall, , P. S. Guest, , and P. O. G. Persson, 2005: Stable boundary-layer scaling regimes: The SHEBA data. Bound.-Layer Meteor., 116, 201235, doi:10.1007/s10546-004-2729-0.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., , E. L. Andreas, , C. W. Fairall, , P. S. Guest, , and P. O. G. Persson, 2013: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Bound.-Layer Meteor., 147, 5182, doi:10.1007/s10546-012-9771-0.

    • Search Google Scholar
    • Export Citation
  • Grisogono, B., , and D. Belušić, 2008: Improving mixing length-scale for stable boundary layers. Quart. J. Roy. Meteor. Soc., 134, 21852192, doi:10.1002/qj.347.

    • Search Google Scholar
    • Export Citation
  • Holt, S. E., , J. R. Koseff, , and J. H. Ferziger, 1992: A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech., 237, 499539, doi:10.1017/S0022112092003513.

    • Search Google Scholar
    • Export Citation
  • Holt, T., , and S. Raman, 1988: A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes. Rev. Geophys., 26, 761780, doi:10.1029/RG026i004p00761.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 1691–1706, doi:10.1175/BAMS-D-11-00187.1.

    • Search Google Scholar
    • Export Citation
  • Howard, L., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512, doi:10.1017/S0022112061000317.

  • Hoyas, S., , and J. Jiménez, 2006: Scaling of the velocity fluctuations in turbulent channels up to . Phys. Fluids, 18, 011702, doi:10.1063/1.2162185.

    • Search Google Scholar
    • Export Citation
  • Huang, J., , E. Bou-Zeid, , and J.-C. Golaz, 2013: Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part II: A novel mixing-length model. J. Atmos. Sci., 70, 15281542, doi:10.1175/JAS-D-12-0168.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. S. R., , J. C. Kaimal, , and J. E. Gaynor, 1985: Some observations of turbulence structure in stable layers. Quart. J. Roy. Meteor. Soc., 111, 793815, doi:10.1002/qj.49711146908.

    • Search Google Scholar
    • Export Citation
  • Itsweire, E. C., , J. R. Koseff, , D. A. Briggs, , and J. H. Ferziger, 1993: Turbulence in stratified shear flows: Implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr., 23, 15081522, doi:10.1175/1520-0485(1993)023<1508:TISSFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., , and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

    • Search Google Scholar
    • Export Citation
  • Karimpour, F., , and S. K. Venayagamoorthy, 2014: A revisit of the equilibrium assumption for predicting near-wall turbulence. J. Fluid Mech., 760, 304312, doi:10.1017/jfm.2014.532.

    • Search Google Scholar
    • Export Citation
  • Kays, W. M., , and M. E. Crawford, 1993: Convective Heat and Mass Transfer. McGraw-Hill, 480 pp.

  • Kim, J., , and L. Mahrt, 1992: Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer. Tellus, 44A, 381394, doi:10.1034/j.1600-0870.1992.t01-4-00003.x.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., , O. Kanechika, , and N. Yasuda, 1978: Heat and momentum transfers under strong stability in the atmospheric surface layer. J. Atmos. Sci., 35, 10121021, doi:10.1175/1520-0469(1978)035<1012:HAMTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., , and J. A. Curry, 2000: A large eddy simulation of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 10521068, doi:10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Launder, B. E., , and D. B. Spalding, 1972: Mathematical Models of Turbulence. Academic Press, 169 pp.

  • Launder, B. E., , and D. B. Spalding, 1974: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng., 3, 269289, doi:10.1016/0045-7825(74)90029-2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11, 263279, doi:10.1007/s001620050093.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2007: Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ. Fluid Mech., 7, 331334, doi:10.1007/s10652-007-9024-9.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , and D. Vickers, 2006: Extremely weak mixing in stable conditions. Bound.-Layer Meteor., 119, 1939, doi:10.1007/s10546-005-9017-5.

    • Search Google Scholar
    • Export Citation
  • Marušic, I., , and A. E. Perry, 1995: A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. J. Fluid Mech., 298, 389407, doi:10.1017/S0022112095003363.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., , G. Svensson, , S. S. Zilitinkevich, , I. Esau, , L. Enger, , and B. Grisogono, 2007: A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J. Atmos. Sci., 64, 41134126, doi:10.1175/2007JAS2294.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and P. A. Durbin, 1975: The structure and dynamics of the ocean surface mixed layer. J. Phys. Oceanogr., 5, 718728, doi:10.1175/1520-0485(1975)005<0718:TSADOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, doi:10.1017/S0022112061000305.

  • Monin, A. S., , and A. M. F. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Nakanish, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, doi:10.1023/A:1018915827400.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, doi:10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1946: Turbulence in an atmosphere with a non-uniform temperature. Tr. Inst. Theor. Geofiz., 1, 95115.

  • Ohya, Y., , R. Nakamuram, , and T. Uchida, 2008: Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Bound.-Layer Meteor., 126, 349363, doi:10.1007/s10546-007-9245-y.

    • Search Google Scholar
    • Export Citation
  • Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified ocean. Izv., Acad. Sci., USSR, Atmos. Oceanic Phys., 1, 493497.

    • Search Google Scholar
    • Export Citation
  • Pahlow, M., , M. Parlange, , and F. Porté-Agel, 2001: On Monin–Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteor., 99, 225248, doi:10.1023/A:1018909000098.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O., , C. W. Fairall, , E. L. Andreas, , P. S. Guest, , and D. K. Perovich, 2002: Measurements near the atmospheric surface flux group at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83,555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht über die entstehung der turbulenz. Z. Angew. Math. Mech., 5, 136139.

  • Richardson, L. F., 1920: The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. London, 97A, 354373, doi:10.1098/rspa.1920.0039.

    • Search Google Scholar
    • Export Citation
  • Rohr, J. J., , E. C. Itsweire, , K. N. Helland, , and C. W. Van Atta, 1988: Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech., 195, 77111, doi:10.1017/S0022112088002332.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., , and T. Gerz, 1995: Turbulent mixing in stably stratified shear flows. J. Appl. Meteor., 34, 3348, doi:10.1175/1520-0450-34.1.33.

    • Search Google Scholar
    • Export Citation
  • Shah, S., , and E. Bou-Zeid, 2014: Very-large-scale motions in the atmospheric boundary layer educed by snapshot proper orthogonal decomposition. Bound.-Layer Meteor., 153, 355–387, doi:10.1007/s10546-014-9950-2.

    • Search Google Scholar
    • Export Citation
  • Shih, L. H., , J. R. Koseff, , J. H. Ferziger, , and C. R. Rehmann, 2000: Scaling and parameterization of stratified homogeneous turbulent shear flow. J. Fluid Mech., 412, 120, doi:10.1017/S0022112000008405.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., , and B. B. Balsley, 2008: Microstructure of turbulence in the stably stratified boundary layer. Bound.-Layer Meteor., 129, 191210, doi:10.1007/s10546-008-9310-1.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., , and A. A. Grachev, 2010: An evaluation of the flux–gradient relationship in the stable boundary layer. Bound.-Layer Meteor., 135, 385405, doi:10.1007/s10546-010-9482-3.

    • Search Google Scholar
    • Export Citation
  • Strang, E. J., , and H. J. S. Fernando, 2001: Vertical mixing and transports through a stratified shear layer. J. Phys. Oceanogr., 31, 20262048, doi:10.1175/1520-0485(2001)031<2026:VMATTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. C. McWilliams, , and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, doi:10.1007/BF00713741.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1931: Effects of variation in density on the stability of superimposed streams of fluid. Proc. Roy. Soc. London,132A, 499–523, doi:10.1098/rspa.1931.0115.

    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1958: The effects of radiative transfer on turbulent flow of a stratified fluid. J. Fluid Mech., 3, 361372, doi:10.1017/S0022112058000045.

    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1976: The Structure of Turbulent Shear Flow. Cambridge University Press, 429 pp.

  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.

  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255275, doi:10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Venayagamoorthy, S. K., , and D. D. Stretch, 2010: On the turbulent Prandtl number in homogeneous stably stratified turbulence. J. Fluid Mech., 644, 359369, doi:10.1017/S002211200999293X.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., , A. C. M. Beljaars, , J.-F. Mahfouf, , and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 24012426, doi:10.1002/qj.49712555904.

    • Search Google Scholar
    • Export Citation
  • Webster, C. A. G., 1964: An experimental study of turbulence in a density-stratified shear flow. J. Fluid Mech., 19, 221245, doi:10.1017/S0022112064000672.

    • Search Google Scholar
    • Export Citation
  • Weng, W., , and P. Taylor, 2003: On modelling the one-dimensional atmospheric boundary layer. Bound.-Layer Meteor., 107, 371400, doi:10.1023/A:1022126511654.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., 2012: An alternative eddy-viscosity model for the horizontally uniform atmospheric boundary layer. Bound.-Layer Meteor., 145, 165184, doi:10.1007/s10546-011-9650-0.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1969: On Richardson’s number as a criterion for laminar-turbulent-laminar transition in the ocean and atmosphere. Radio Sci., 4, 12891298, doi:10.1029/RS004i012p01289.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1972: On the determination of the height of the Ekman boundary layer. Bound.-Layer Meteor., 3, 141145, doi:10.1007/BF02033914.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., , and A. Baklanov, 2002: Calculation of the height of the stable boundary layer in practical applications. Bound.-Layer Meteor., 105, 389409, doi:10.1023/A:1020376832738.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., , T. Elperin, , N. Kleeorin, , and I. Rogachevskii, 2007: Energy-and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteor., 125, 167191, doi:10.1007/s10546-007-9189-2.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., , T. Elperin, , N. Kleeorin, , I. Rogachevskii, , I. Esau, , T. Mauritsen, , and M. W. Miles, 2008: Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799, doi:10.1002/qj.264.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 27 27 8
PDF Downloads 6 6 1

A Shear-Based Parameterization of Turbulent Mixing in the Stable Atmospheric Boundary Layer

View More View Less
  • 1 Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

In this study, shear-based parameterizations of turbulent mixing in the stable atmospheric boundary layer (SABL) are proposed. A relevant length-scale estimate for the mixing length of the turbulent momentum field is constructed from the turbulent kinetic energy and the mean shear rate S as . Using observational data from two field campaigns—the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99)— is shown to have a strong correlation with . The relationship between and corresponds to the ratio of the magnitude of the tangential components of the turbulent momentum flux tensor to , known as stress intensity ratio, . The field data clearly show that is linked to stability. The stress intensity ratio also depends on the flow energetics that can be assessed using a shear-production Reynolds number, , where P is shear production of turbulent kinetic energy and is the kinematic viscosity. This analysis shows that high mixing rates can indeed persist at strong stability. On this basis, shear-based parameterizations are proposed for the eddy diffusivity for momentum, , and eddy diffusivity for heat, , showing remarkable agreement with the exact quantities. Furthermore, a broader assessment of the proposed parameterizations is given through an a priori evaluation of large-eddy simulation (LES) data from the first GEWEX Atmospheric Boundary Layer Study (GABLS). The shear-based parameterizations outperform many existing models in predicting turbulent mixing in the SABL. The results of this study provide a framework for improved representation of the SABL in operational models.

Corresponding author address: Subhas K. Venayagamoorthy, Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus Delivery, Fort Collins, CO 80523-1372. E-mail: vskaran@colostate.edu

Abstract

In this study, shear-based parameterizations of turbulent mixing in the stable atmospheric boundary layer (SABL) are proposed. A relevant length-scale estimate for the mixing length of the turbulent momentum field is constructed from the turbulent kinetic energy and the mean shear rate S as . Using observational data from two field campaigns—the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99)— is shown to have a strong correlation with . The relationship between and corresponds to the ratio of the magnitude of the tangential components of the turbulent momentum flux tensor to , known as stress intensity ratio, . The field data clearly show that is linked to stability. The stress intensity ratio also depends on the flow energetics that can be assessed using a shear-production Reynolds number, , where P is shear production of turbulent kinetic energy and is the kinematic viscosity. This analysis shows that high mixing rates can indeed persist at strong stability. On this basis, shear-based parameterizations are proposed for the eddy diffusivity for momentum, , and eddy diffusivity for heat, , showing remarkable agreement with the exact quantities. Furthermore, a broader assessment of the proposed parameterizations is given through an a priori evaluation of large-eddy simulation (LES) data from the first GEWEX Atmospheric Boundary Layer Study (GABLS). The shear-based parameterizations outperform many existing models in predicting turbulent mixing in the SABL. The results of this study provide a framework for improved representation of the SABL in operational models.

Corresponding author address: Subhas K. Venayagamoorthy, Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus Delivery, Fort Collins, CO 80523-1372. E-mail: vskaran@colostate.edu
Save