A Shear-Based Parameterization of Turbulent Mixing in the Stable Atmospheric Boundary Layer

Jordan M. Wilson Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by Jordan M. Wilson in
Current site
Google Scholar
PubMed
Close
and
Subhas K. Venayagamoorthy Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado

Search for other papers by Subhas K. Venayagamoorthy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, shear-based parameterizations of turbulent mixing in the stable atmospheric boundary layer (SABL) are proposed. A relevant length-scale estimate for the mixing length of the turbulent momentum field is constructed from the turbulent kinetic energy and the mean shear rate S as . Using observational data from two field campaigns—the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99)— is shown to have a strong correlation with . The relationship between and corresponds to the ratio of the magnitude of the tangential components of the turbulent momentum flux tensor to , known as stress intensity ratio, . The field data clearly show that is linked to stability. The stress intensity ratio also depends on the flow energetics that can be assessed using a shear-production Reynolds number, , where P is shear production of turbulent kinetic energy and is the kinematic viscosity. This analysis shows that high mixing rates can indeed persist at strong stability. On this basis, shear-based parameterizations are proposed for the eddy diffusivity for momentum, , and eddy diffusivity for heat, , showing remarkable agreement with the exact quantities. Furthermore, a broader assessment of the proposed parameterizations is given through an a priori evaluation of large-eddy simulation (LES) data from the first GEWEX Atmospheric Boundary Layer Study (GABLS). The shear-based parameterizations outperform many existing models in predicting turbulent mixing in the SABL. The results of this study provide a framework for improved representation of the SABL in operational models.

Corresponding author address: Subhas K. Venayagamoorthy, Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus Delivery, Fort Collins, CO 80523-1372. E-mail: vskaran@colostate.edu

Abstract

In this study, shear-based parameterizations of turbulent mixing in the stable atmospheric boundary layer (SABL) are proposed. A relevant length-scale estimate for the mixing length of the turbulent momentum field is constructed from the turbulent kinetic energy and the mean shear rate S as . Using observational data from two field campaigns—the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99)— is shown to have a strong correlation with . The relationship between and corresponds to the ratio of the magnitude of the tangential components of the turbulent momentum flux tensor to , known as stress intensity ratio, . The field data clearly show that is linked to stability. The stress intensity ratio also depends on the flow energetics that can be assessed using a shear-production Reynolds number, , where P is shear production of turbulent kinetic energy and is the kinematic viscosity. This analysis shows that high mixing rates can indeed persist at strong stability. On this basis, shear-based parameterizations are proposed for the eddy diffusivity for momentum, , and eddy diffusivity for heat, , showing remarkable agreement with the exact quantities. Furthermore, a broader assessment of the proposed parameterizations is given through an a priori evaluation of large-eddy simulation (LES) data from the first GEWEX Atmospheric Boundary Layer Study (GABLS). The shear-based parameterizations outperform many existing models in predicting turbulent mixing in the SABL. The results of this study provide a framework for improved representation of the SABL in operational models.

Corresponding author address: Subhas K. Venayagamoorthy, Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus Delivery, Fort Collins, CO 80523-1372. E-mail: vskaran@colostate.edu
Save
  • André, J. C., G. De Moor, P. Lacarrère, G. Therry, and R. du Vachat, 1978: Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. J. Atmos. Sci., 35, 18611883, doi:10.1175/1520-0469(1978)035<1861:MTHEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. I., C. W. Fairall, P. S. Guest, and P. O. G. Persson, 1999: An overview of the SHEBA atmospheric surface flux program. Preprints, 13th Symp. on Boundary Layers and Turbulence, Dallas, TX, Amer. Meteor. Soc., 550–555.

  • Ansorge, C., and J. P. Mellado, 2014: Global intermittency and collapsing turbulence in the stratified planetary boundary layer. Bound.-Layer Meteor., 153, 89116, doi:10.1007/s10546-014-9941-3.

    • Search Google Scholar
    • Export Citation
  • Apsley, D. D., and I. P. Castro, 1997: A limited-length-scale k-ε model for the neutral and stably-stratified atmospheric boundary layer. Bound.-Layer Meteor., 83, 7598, doi:10.1023/A:1000252210512.

    • Search Google Scholar
    • Export Citation
  • Armenio, V., and S. Sakar, 2002: An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech., 459, 142, doi:10.1017/S0022112002007851.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics on Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, doi:10.1023/A:1019992330866.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, doi:10.1007/s10546-004-2820-6.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Academy of Arts and Sciences, 287–304.

  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchanges in a neutral atmosphere. J. Geophys. Res., 67, 30953102, doi:10.1029/JZ067i008p03095.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35, 14271440, doi:10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., Y. Cheng, A. M. Howard, and I. N. Esau, 2008: Stably stratified flows: A model with no Ri(cr). J. Atmos. Sci., 65, 24372447, doi:10.1175/2007JAS2470.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., V. M. Canuto, and A. M. Howard, 2002: An improved model for the turbulent PBL. J. Atmos. Sci., 59, 15501565, doi:10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corrsin, A., 1958: Local isotropy in turbulent shear flow. NACA Research Memo. 58B11, 15 pp. [Available online at http://naca.central.cranfield.ac.uk/reports/1958/naca-rm-58b11.pdf.]

  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273303, doi:10.1007/s10546-005-3780-1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1976: Clear and cloud-capped mixed layers—Their numerical simulation, structure and growth and parameterizations. Seminars on the Treatment of the Boundary Layer in Numerical Weather Prediction, European Centre for Medium Range Weather Forecasts, 234–284.

  • Delage, Y., 1974: A numerical study of the nocturnal atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 100, 351364, doi:10.1002/qj.49710042507.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, H., 1994: A balanced approach to stable boundary layer dynamics. J. Atmos. Sci., 51, 34863504, doi:10.1175/1520-0469(1994)051<3486:AATSBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Detering, H. W., and D. Etling, 1985: Application of the E-ε turbulence model to the atmospheric boundary layer. Bound.-Layer Meteor., 33, 113133, doi:10.1007/BF00123386.

    • Search Google Scholar
    • Export Citation
  • Dougherty, J. P., 1961: The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys., 21, 210213, doi:10.1016/0021-9169(61)90116-7.

    • Search Google Scholar
    • Export Citation
  • Driedonks, A. G. M., H. van Dop, and W. H. Kohsiek, 1978: Meteorological observations on the 213 m mast at Cabauw in the Netherlands. Preprints, Fourth Symp. on Meteorological Observations and Instrumentation, Denver, CO, Amer. Meteor. Soc., 4146.

  • Duynkerke, P. G., and G. M. Driedonks, 1987: A model for the turbulent structure of the stratocumulus-topped atmospheric boundary layer. J. Atmos. Sci., 44, 4364, doi:10.1175/1520-0469(1987)044<0043:AMFTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., A. Sukoriansky, and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, 6569, doi:10.1002/asl.153.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1982: Observations in the nocturnal boundary layer. Bound.-Layer Meteor., 22, 2148, doi:10.1007/BF00128054.

  • Gerz, T., U. Schumann, and S. E. Elghobashi, 1989: Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech., 200, 563594, doi:10.1017/S0022112089000765.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2005: Stable boundary-layer scaling regimes: The SHEBA data. Bound.-Layer Meteor., 116, 201235, doi:10.1007/s10546-004-2729-0.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2013: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Bound.-Layer Meteor., 147, 5182, doi:10.1007/s10546-012-9771-0.

    • Search Google Scholar
    • Export Citation
  • Grisogono, B., and D. Belušić, 2008: Improving mixing length-scale for stable boundary layers. Quart. J. Roy. Meteor. Soc., 134, 21852192, doi:10.1002/qj.347.

    • Search Google Scholar
    • Export Citation
  • Holt, S. E., J. R. Koseff, and J. H. Ferziger, 1992: A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech., 237, 499539, doi:10.1017/S0022112092003513.

    • Search Google Scholar
    • Export Citation
  • Holt, T., and S. Raman, 1988: A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes. Rev. Geophys., 26, 761780, doi:10.1029/RG026i004p00761.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 1691–1706, doi:10.1175/BAMS-D-11-00187.1.

    • Search Google Scholar
    • Export Citation
  • Howard, L., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 10, 509512, doi:10.1017/S0022112061000317.

  • Hoyas, S., and J. Jiménez, 2006: Scaling of the velocity fluctuations in turbulent channels up to . Phys. Fluids, 18, 011702, doi:10.1063/1.2162185.

    • Search Google Scholar
    • Export Citation
  • Huang, J., E. Bou-Zeid, and J.-C. Golaz, 2013: Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part II: A novel mixing-length model. J. Atmos. Sci., 70, 15281542, doi:10.1175/JAS-D-12-0168.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. S. R., J. C. Kaimal, and J. E. Gaynor, 1985: Some observations of turbulence structure in stable layers. Quart. J. Roy. Meteor. Soc., 111, 793815, doi:10.1002/qj.49711146908.

    • Search Google Scholar
    • Export Citation
  • Itsweire, E. C., J. R. Koseff, D. A. Briggs, and J. H. Ferziger, 1993: Turbulence in stratified shear flows: Implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr., 23, 15081522, doi:10.1175/1520-0485(1993)023<1508:TISSFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

    • Search Google Scholar
    • Export Citation
  • Karimpour, F., and S. K. Venayagamoorthy, 2014: A revisit of the equilibrium assumption for predicting near-wall turbulence. J. Fluid Mech., 760, 304312, doi:10.1017/jfm.2014.532.

    • Search Google Scholar
    • Export Citation
  • Kays, W. M., and M. E. Crawford, 1993: Convective Heat and Mass Transfer. McGraw-Hill, 480 pp.

  • Kim, J., and L. Mahrt, 1992: Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer. Tellus, 44A, 381394, doi:10.1034/j.1600-0870.1992.t01-4-00003.x.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., O. Kanechika, and N. Yasuda, 1978: Heat and momentum transfers under strong stability in the atmospheric surface layer. J. Atmos. Sci., 35, 10121021, doi:10.1175/1520-0469(1978)035<1012:HAMTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 10521068, doi:10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Launder, B. E., and D. B. Spalding, 1972: Mathematical Models of Turbulence. Academic Press, 169 pp.

  • Launder, B. E., and D. B. Spalding, 1974: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng., 3, 269289, doi:10.1016/0045-7825(74)90029-2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11, 263279, doi:10.1007/s001620050093.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2007: Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ. Fluid Mech., 7, 331334, doi:10.1007/s10652-007-9024-9.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Vickers, 2006: Extremely weak mixing in stable conditions. Bound.-Layer Meteor., 119, 1939, doi:10.1007/s10546-005-9017-5.

    • Search Google Scholar
    • Export Citation
  • Marušic, I., and A. E. Perry, 1995: A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support. J. Fluid Mech., 298, 389407, doi:10.1017/S0022112095003363.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., G. Svensson, S. S. Zilitinkevich, I. Esau, L. Enger, and B. Grisogono, 2007: A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J. Atmos. Sci., 64, 41134126, doi:10.1175/2007JAS2294.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and P. A. Durbin, 1975: The structure and dynamics of the ocean surface mixed layer. J. Phys. Oceanogr., 5, 718728, doi:10.1175/1520-0485(1975)005<0718:TSADOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, doi:10.1017/S0022112061000305.

  • Monin, A. S., and A. M. F. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Nakanish, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, doi:10.1023/A:1018915827400.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, doi:10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1946: Turbulence in an atmosphere with a non-uniform temperature. Tr. Inst. Theor. Geofiz., 1, 95115.

  • Ohya, Y., R. Nakamuram, and T. Uchida, 2008: Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Bound.-Layer Meteor., 126, 349363, doi:10.1007/s10546-007-9245-y.

    • Search Google Scholar
    • Export Citation
  • Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified ocean. Izv., Acad. Sci., USSR, Atmos. Oceanic Phys., 1, 493497.

    • Search Google Scholar
    • Export Citation
  • Pahlow, M., M. Parlange, and F. Porté-Agel, 2001: On Monin–Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteor., 99, 225248, doi:10.1023/A:1018909000098.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O., C. W. Fairall, E. L. Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the atmospheric surface flux group at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83,555581, doi:10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht über die entstehung der turbulenz. Z. Angew. Math. Mech., 5, 136139.

  • Richardson, L. F., 1920: The supply of energy from and to atmospheric eddies. Proc. Roy. Soc. London, 97A, 354373, doi:10.1098/rspa.1920.0039.

    • Search Google Scholar
    • Export Citation
  • Rohr, J. J., E. C. Itsweire, K. N. Helland, and C. W. Van Atta, 1988: Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech., 195, 77111, doi:10.1017/S0022112088002332.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., and T. Gerz, 1995: Turbulent mixing in stably stratified shear flows. J. Appl. Meteor., 34, 3348, doi:10.1175/1520-0450-34.1.33.

    • Search Google Scholar
    • Export Citation
  • Shah, S., and E. Bou-Zeid, 2014: Very-large-scale motions in the atmospheric boundary layer educed by snapshot proper orthogonal decomposition. Bound.-Layer Meteor., 153, 355–387, doi:10.1007/s10546-014-9950-2.

    • Search Google Scholar
    • Export Citation
  • Shih, L. H., J. R. Koseff, J. H. Ferziger, and C. R. Rehmann, 2000: Scaling and parameterization of stratified homogeneous turbulent shear flow. J. Fluid Mech., 412, 120, doi:10.1017/S0022112000008405.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., and B. B. Balsley, 2008: Microstructure of turbulence in the stably stratified boundary layer. Bound.-Layer Meteor., 129, 191210, doi:10.1007/s10546-008-9310-1.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., and A. A. Grachev, 2010: An evaluation of the flux–gradient relationship in the stable boundary layer. Bound.-Layer Meteor., 135, 385405, doi:10.1007/s10546-010-9482-3.

    • Search Google Scholar
    • Export Citation
  • Strang, E. J., and H. J. S. Fernando, 2001: Vertical mixing and transports through a stratified shear layer. J. Phys. Oceanogr., 31, 20262048, doi:10.1175/1520-0485(2001)031<2026:VMATTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, doi:10.1007/BF00713741.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1931: Effects of variation in density on the stability of superimposed streams of fluid. Proc. Roy. Soc. London,132A, 499–523, doi:10.1098/rspa.1931.0115.

    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1958: The effects of radiative transfer on turbulent flow of a stratified fluid. J. Fluid Mech., 3, 361372, doi:10.1017/S0022112058000045.

    • Search Google Scholar
    • Export Citation
  • Townsend, A. A., 1976: The Structure of Turbulent Shear Flow. Cambridge University Press, 429 pp.

  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 368 pp.

  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255275, doi:10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Venayagamoorthy, S. K., and D. D. Stretch, 2010: On the turbulent Prandtl number in homogeneous stably stratified turbulence. J. Fluid Mech., 644, 359369, doi:10.1017/S002211200999293X.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., A. C. M. Beljaars, J.-F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 24012426, doi:10.1002/qj.49712555904.

    • Search Google Scholar
    • Export Citation
  • Webster, C. A. G., 1964: An experimental study of turbulence in a density-stratified shear flow. J. Fluid Mech., 19, 221245, doi:10.1017/S0022112064000672.

    • Search Google Scholar
    • Export Citation
  • Weng, W., and P. Taylor, 2003: On modelling the one-dimensional atmospheric boundary layer. Bound.-Layer Meteor., 107, 371400, doi:10.1023/A:1022126511654.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., 2012: An alternative eddy-viscosity model for the horizontally uniform atmospheric boundary layer. Bound.-Layer Meteor., 145, 165184, doi:10.1007/s10546-011-9650-0.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., 1969: On Richardson’s number as a criterion for laminar-turbulent-laminar transition in the ocean and atmosphere. Radio Sci., 4, 12891298, doi:10.1029/RS004i012p01289.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1972: On the determination of the height of the Ekman boundary layer. Bound.-Layer Meteor., 3, 141145, doi:10.1007/BF02033914.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., and A. Baklanov, 2002: Calculation of the height of the stable boundary layer in practical applications. Bound.-Layer Meteor., 105, 389409, doi:10.1023/A:1020376832738.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy-and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteor., 125, 167191, doi:10.1007/s10546-007-9189-2.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, and M. W. Miles, 2008: Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799, doi:10.1002/qj.264.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 762 369 48
PDF Downloads 182 60 13