• Bao, J.-W., , S. A. Michelson, , and J. M. Wilczak, 2002: Sensitivity of numerical simulations to parameterizations of roughness for surface heat fluxes at high winds over the sea. Mon. Wea. Rev., 130, 19261932, doi:10.1175/1520-0493(2002)130<1926:SONSTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., , S. G. Gopalakrishnan, , S. A. Michelson, , F. D. Marks, , and M. T. Montgomery, 2012: Impact of physics representations in the HWRFX on simulated hurricane structure and pressure–wind relationships. Mon. Wea. Rev., 140, 32783299, doi:10.1175/MWR-D-11-00332.1.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, doi:10.1007/s10546-004-2820-6.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, doi:10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, doi:10.1175/MWR-D-11-00231.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, doi:10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , J. C. Wyngaard, , and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Donelan, M. A., , B. K. Haus, , N. Reul, , W. J. Plant, , M. Stiassnie, , H. C. Graber, , O. B. Brown, , and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., , and M. Lystad, 1977: The Ekman layer of a circular vortex: A numerical and theoretical study. Geophys. Norv., 31, 116.

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fang, J., , and F. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 33273346, doi:10.1175/MWR-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2005: Why rolls are prevalent in the hurricane boundary layer. J. Atmos. Sci., 62, 26472661, doi:10.1175/JAS3475.1.

  • French, J. R., , W. M. Drennan, , J. A. Zhang, , and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102, doi:10.1175/JAS3887.1.

    • Search Google Scholar
    • Export Citation
  • Gao, K., , and I. Ginis, 2014: On the generation of roll vortices due to the inflection point instability of the hurricane boundary layer flow. J. Atmos. Sci., 71, 42924307, doi:10.1175/JAS-D-13-0362.1.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., , F. Marks, , J. A. Zhang, , X. Zhang, , J.-W. Bao, , and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, doi:10.1175/JAS-D-11-0340.1.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., , and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, doi:10.1175/MWR-D-12-00274.1.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., , and F. Zhang, 2014: Sensitivity of tropical cyclone simulations to parametric uncertainties in air–sea fluxes and implications for parameter estimation. Mon. Wea. Rev., 142, 22902308, doi:10.1175/MWR-D-13-00208.1.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., , and F. Zhang, 2015: Numerical simulations of Hurricane Katrina (2005) in the turbulent gray zone. J. Adv. Model. Earth Syst., 07, doi:10.1002/2014MS000399.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., , F. Zhang, , and P. Markowski, 2011: Multiscale processes leading to supercells in the landfalling outer rainbands of Hurricane Katrina (2005). Wea. Forecasting, 26, 828847, doi:10.1175/WAF-D-10-05049.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology.Academic Press, 535 pp.

  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, doi:10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2010: Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations. Quart. J. Roy. Meteor. Soc., 136, 16891699, doi:10.1002/qj.667.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, doi:10.1175/MWR-D-11-00217.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 28082830, doi:10.1175/JAS-D-13-046.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., , and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, doi:10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J., , and D. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430444, doi:10.1175/1520-0493(1983)111<0430:AUBCPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., , and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 10521068, doi:10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., , and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-drive planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , R. K. Smith, , and S. V. Nguyen, 2010: Sensitivity of tropical-cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136, 19451953, doi:10.1002/qj.702.

    • Search Google Scholar
    • Export Citation
  • Morrison, I., , S. Businger, , F. Marks, , P. Dodge, , and J. A. Businger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62, 26622673, doi:10.1175/JAS3508.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2000: Large-eddy simulation of radiation fog. Bound.-Layer Meteor., 94, 461493, doi:10.1023/A:1002490423389.

  • Nakanishi, M., , and H. Niino, 2012: Large-eddy simulation of roll vortices in a hurricane boundary layer. J. Atmos. Sci., 69, 35583575, doi:10.1175/JAS-D-11-0237.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , J. A. Zhang, , and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, doi:10.1175/2009MWR2785.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , D. P. Stern, , and J. A. Zhang, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, doi:10.1175/2009MWR2786.1.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 68, 15861606.

  • Powell, M. D., , E. W. Uhlhorn, , and J. D. Kepert, 2009: Estimating maximum surface winds from hurricane reconnaissance measurements. Wea. Forecasting, 24, 868883, doi:10.1175/2008WAF2007087.1.

    • Search Google Scholar
    • Export Citation
  • Rosenthal, S. L., 1971: The response of a tropical cyclone model to variations in boundary layer parameters, initial conditions, lateral boundary conditions, and domain size. Mon. Wea. Rev., 99, 767777, doi:10.1175/1520-0493(1971)099<0767:TROATC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, doi:10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and G. H. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. J. Atmos. Sci., 69, 22842299, doi:10.1175/JAS-D-11-0204.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , Y. Chen, , W. Wang, , C. Davis, , J. Dudhia, , and G. J. Holland, 2009: Large-eddy simulation of an idealized tropical cyclones. Bull. Amer. Meteor. Soc., 90, 17831788, doi:10.1175/2009BAMS2884.1.

    • Search Google Scholar
    • Export Citation
  • Shpund, J., , M. Pinsky, , and A. Khain, 2011: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part I: The impact of large eddies. J. Atmos. Sci., 68, 23662384, doi:10.1175/2011JAS3652.1.

    • Search Google Scholar
    • Export Citation
  • Shpund, J., , J. A. Zhang, , M. Pinsky, , and A. Khain, 2012: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part II: The role of sea spray. J. Atmos. Sci., 69, 35013514, doi:10.1175/JAS-D-11-0281.1.

    • Search Google Scholar
    • Export Citation
  • Shpund, J., , J. A. Zhang, , M. Pinsky, , and A. Khain, 2014: Microphysical structure of the marine boundary layer under strong wind and sea spray formation as seen from a 2D explicit microphysical model. Part III: Parameterization of height-dependent droplet size distribution. J. Atmos. Sci., 71, 19141934, doi:10.1175/JAS-D-12-0201.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , M. T. Montgomery, , and N. Van Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, doi:10.1002/qj.428.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., , M. T. Montgomery, , and G. L. Thomsen, 2014: Sensitivity of tropical-cyclone models to the surface drag coefficient in different boundary-layer schemes. Quart. J. Roy. Meteor. Soc., 140, 792–804, doi:10.1002/qj.2057.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, doi:10.1175/JAS-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. C. McWilliams, , and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, doi:10.1007/BF00713741.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. C. McWilliams, , and C.-H. Moeng, 1996: A grid nesting method for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 80, 167202, doi:10.1007/BF00119016.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , C.-H. Moeng, , B. Stevens, , D. Lenschow, , and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064, doi:10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., , Y. Ma, , and N. E. Davidson, 2013: Secondary eyewall formation and eyewall replacement cycles in a simulated hurricane: Effect of the net radial force in the hurricane boundary layer. J. Atmos. Sci., 70, 13171341, doi:10.1175/JAS-D-12-017.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , and J. Winslow, 1998: Intense sub-kilometer-scale boundary layer rolls observed in Hurricane Fran. Science, 280, 555557, doi:10.1126/science.280.5363.555.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , and W. M. Drennan, 2012: An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci., 69, 32233236, doi:10.1175/JAS-D-11-0348.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , P. G. Black, , J. R. French, , and W. M. Drennan, 2008a: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , K. B. Katsaros, , P. G. Black, , S. Lehner, , J. R. French, , and W. M. Drennan, 2008b: Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Bound.-Layer Meteor., 128, 173189, doi:10.1007/s10546-008-9281-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , F. D. Marks, , M. T. Montgomery, , and S. Lorsolo, 2011a: An estimation of turbulent characteristics in the low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462, doi:10.1175/2010MWR3435.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., , R. F. Rogers, , D. S. Nolan, , and F. D. Marks, 2011b: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, doi:10.1175/MWR-D-10-05017.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., 2008: Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res., 113, D17104, doi:10.1029/2007JD009643.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 2
PDF Downloads 10 10 1

Idealized Large-Eddy Simulations of a Tropical Cyclone–like Boundary Layer

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

The tropical cyclone (TC) boundary layer (TCBL)—featuring extreme winds over a rough ocean—is difficult to study observationally. With increasing computational power, high-resolution large-eddy simulation (LES) has become an attractive tool to advance understanding of the TCBL. Here, an idealized Cartesian-based LES is employed to investigate boundary layers driven by extreme TC-like winds. The LES includes the effects of centripetal acceleration through an “effective” Coriolis parameter f* = f + 2Vg/R, with the Earth Coriolis parameter f, gradient wind Vg, and (fixed) radius R. Multiple LES experiments are conducted to elucidate how the boundary layer develops and persists in the strongly rotating TC environment. In all simulations, an overshooting jet develops, the height of which increases with Vg, R, and surface drag. Normalized jet strength also increases with R and drag but decreases with Vg. Turbulent diffusivity Km—which must be parameterized in mesoscale and global models but can be diagnosed by LES—varies considerably both within and among simulations. Also evident is a pseudo-inertial oscillation with a period close to the theoretical 2π/f* and an amplitude that decreases exponentially with time. The LES simulations agree with the linear theory for partial-slip Ekman spirals, except when the effects of Km overwhelmingly counter the effects of Vg.

Corresponding author address: Mr. Benjamin W. Green, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: bwg5019@psu.edu

Abstract

The tropical cyclone (TC) boundary layer (TCBL)—featuring extreme winds over a rough ocean—is difficult to study observationally. With increasing computational power, high-resolution large-eddy simulation (LES) has become an attractive tool to advance understanding of the TCBL. Here, an idealized Cartesian-based LES is employed to investigate boundary layers driven by extreme TC-like winds. The LES includes the effects of centripetal acceleration through an “effective” Coriolis parameter f* = f + 2Vg/R, with the Earth Coriolis parameter f, gradient wind Vg, and (fixed) radius R. Multiple LES experiments are conducted to elucidate how the boundary layer develops and persists in the strongly rotating TC environment. In all simulations, an overshooting jet develops, the height of which increases with Vg, R, and surface drag. Normalized jet strength also increases with R and drag but decreases with Vg. Turbulent diffusivity Km—which must be parameterized in mesoscale and global models but can be diagnosed by LES—varies considerably both within and among simulations. Also evident is a pseudo-inertial oscillation with a period close to the theoretical 2π/f* and an amplitude that decreases exponentially with time. The LES simulations agree with the linear theory for partial-slip Ekman spirals, except when the effects of Km overwhelmingly counter the effects of Vg.

Corresponding author address: Mr. Benjamin W. Green, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: bwg5019@psu.edu
Save