• Andersen, J. A., , and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, doi:10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , E. D. Maloney, , A. H. Sobel, , D. M. Frierson, , and L. J. Donner, 2013: Tropical intraseasonal variability in version 3 of the GFDL atmosphere model. J. Climate, 26, 426449, doi:10.1175/JCLI-D-12-00103.1.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , E. D. Maloney, , A. H. Sobel, , and D. M. W. Frierson, 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71, 3327–3349, doi:10.1175/JAS-D-13-0240.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, doi:10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. Widmann, , V. P. Dymnikov, , J. M. Wallace, , and I. Blad, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, doi:10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. E. Peters, , and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, doi:10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1969: A further note on large-scale motions in the tropics. J. Atmos. Sci., 26, 182185, doi:10.1175/1520-0469(1969)026<0182:AFNOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cho, H., , and D. Pendlebury, 1997: Wave CISK of equatorial waves and the vertical distribution of cumulus heating. J. Atmos. Sci., 54, 24292440, doi:10.1175/1520-0469(1997)054<2429:WCOEWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: Convectively coupled Kelvin waves in an idealized moist general circulation model. J. Atmos. Sci., 64, 20762090, doi:10.1175/JAS3945.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., , and B. Wang, 2009: Critical roles of the stratiform rainfall in sustaining the Madden–Julian oscillation: GCM experiments. J. Climate, 22, 39393959, doi:10.1175/2009JCLI2610.1.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., , and D. J. Raymond, 2007: A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus, 59A, 344354, doi:10.1111/j.1600-0870.2007.00230.x.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., , and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 27072721, doi:10.1175/JAS3352.1.

  • Haertel, P. T., , G. N. Kiladis, , A. Denno, , and T. M. Rickenbach, 2008: Vertical-mode decompositions of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65, 813833, doi:10.1175/2007JAS2314.1.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., , and E. D. Maloney, 2011: The role of moisture–convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770, doi:10.1175/2011JCLI3803.1.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., , and E. D. Maloney, 2014: The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Model. Earth Syst., 6, 420440, doi:10.1002/2013MS000272.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett.,31, L10101, doi:10.1029/2004GL019601.

  • Kiladis, G. N., , and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 19001923, doi:10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, doi:10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. H. Straub, , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436, doi:10.1175/2009JCLI3063.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , J.-S. Kug, , and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, doi:10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854, doi:10.1175/2007JAS2444.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2011: The wavelength dependence of the gross moist stability and the scale selection in the instability of column-integrated moist static energy. J. Atmos. Sci., 68, 6174, doi:10.1175/2010JAS3591.1.

    • Search Google Scholar
    • Export Citation
  • Lappen, C.-L., , and C. Schumacher, 2012: Heating in the tropical atmosphere: What level of detail is critical for accurate MJO simulations in GCMs? Climate Dyn., 39, 25472568, doi:10.1007/s00382-012-1327-y.

    • Search Google Scholar
    • Export Citation
  • Lappen, C.-L., , and C. Schumacher, 2014: The role of tilted heating in the evolution of the MJO. J. Geophys. Res. Atmos., 119, 29662989, doi:10.1002/2013JD020638.

    • Search Google Scholar
    • Export Citation
  • Lin, J., , B. Mapes, , M. Zhang, , and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61, 296309, doi:10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 695715, doi:10.1175/1520-0469(1996)053<0695:KATCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, doi:10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, doi:10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , S. Tulich, , J. Lin, , and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, doi:10.1016/j.dynatmoce.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2012: Short-term versus climatological relationship between precipitation and tropospheric humidity. J. Climate, 25, 79837990, doi:10.1175/JCLI-D-12-00037.1.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., , and T. S. L’Ecuyer, 2014: A mechanism of tropical convection inferred from observed variability in the moist static energy budget. J. Atmos. Sci., 71, 37473766, doi:10.1175/JAS-D-14-0015.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, doi:10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , O. Peters, , and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, doi:10.1175/2009JAS2962.1.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., , and C. S. Bretherton, 2006: Structure of tropical variability from a vertical mode perspective. Theor. Comput. Fluid Dyn., 20, 501524, doi:10.1007/s00162-006-0034-x.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898, doi:10.1002/qj.49712656406.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046, doi:10.1175/2008JCLI2739.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , S. L. Sessions, , A. H. Sobel, , and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, 9, doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and C. S. Bretherton, 2000: Modeling tropical precipitation in a single column. J. Climate, 13, 43784392, doi:10.1175/1520-0442(2000)013<4378:MTPIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, doi:10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , S. Wang, , and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, doi:10.1175/JAS-D-14-0052.1.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., , and G. N. Kiladis, 2003: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60, 16551668, doi:10.1175/1520-0469(2003)060<1655:TOSOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009: The moisture mode in the quasi-equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. J. Atmos. Sci., 66, 15071523, doi:10.1175/2008JAS2690.1.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., , K. Lau, , and C. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124, 18921913, doi:10.1175/1520-0493(1996)124<1892:OOAQDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., , and J. A. Young, 1994: Satellite observations during TOGA COARE: Large-scale descriptive overview. Mon. Wea. Rev., 122, 24262441, doi:10.1175/1520-0493(1994)122<2426:SODTCL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416, doi:10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., 2003: A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J. Atmos. Sci., 60, 377392, doi:10.1175/1520-0469(2003)060<0377:ASCDEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , B. Chen, , and W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57, 23742396, doi:10.1175/1520-0469(2000)057<2374:TMJOOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, J., , C. Chou, , and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55, 13541372, doi:10.1175/1520-0469(1998)055<1354:ETGMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., , and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54, 15031524, doi:10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 109 38
PDF Downloads 89 89 22

Column-Integrated Moist Static Energy Budget Analysis on Various Time Scales during TOGA COARE

View More View Less
  • 1 University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

Moist static energy (MSE) budgets on different time scales are analyzed in the TOGA COARE data using Lanczos filters to separate variability with different frequencies. Four different time scales (~2-day, ~5-day, ~10-day, and MJO time scales) are chosen based on the power spectrum of the precipitation and previous TOGA COARE studies. The lag regression-slope technique is utilized to depict characteristic patterns of the variability associated with the MSE budgets on the different time scales.

This analysis illustrates that the MSE budgets behave in significantly different ways on the different time scales. On shorter time scales, the vertical advection acts as a primary driver of the recharge–discharge mechanism of column MSE. As the time scale gets longer, in contrast, the relative contributions of the other budget terms become greater, and consequently, on the MJO time scale all the budget terms have nearly the same amplitude. Specifically, these results indicate that horizontal advection plays an important role in the eastward propagation of the MJO during TOGA COARE. On the MJO time scale, the export of MSE by the vertical advection is in phase with the precipitation. On shorter time scales, the vertical velocity profile transitions from bottom heavy to top heavy, while on longer time scales, the shape becomes more constant and similar to a first-baroclinic-mode structure. This leads to a more-constant gross moist stability on longer time scales, which the authors estimate.

Corresponding author address: Kuniaki Inoue, Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: inoue2@wisc.edu

Abstract

Moist static energy (MSE) budgets on different time scales are analyzed in the TOGA COARE data using Lanczos filters to separate variability with different frequencies. Four different time scales (~2-day, ~5-day, ~10-day, and MJO time scales) are chosen based on the power spectrum of the precipitation and previous TOGA COARE studies. The lag regression-slope technique is utilized to depict characteristic patterns of the variability associated with the MSE budgets on the different time scales.

This analysis illustrates that the MSE budgets behave in significantly different ways on the different time scales. On shorter time scales, the vertical advection acts as a primary driver of the recharge–discharge mechanism of column MSE. As the time scale gets longer, in contrast, the relative contributions of the other budget terms become greater, and consequently, on the MJO time scale all the budget terms have nearly the same amplitude. Specifically, these results indicate that horizontal advection plays an important role in the eastward propagation of the MJO during TOGA COARE. On the MJO time scale, the export of MSE by the vertical advection is in phase with the precipitation. On shorter time scales, the vertical velocity profile transitions from bottom heavy to top heavy, while on longer time scales, the shape becomes more constant and similar to a first-baroclinic-mode structure. This leads to a more-constant gross moist stability on longer time scales, which the authors estimate.

Corresponding author address: Kuniaki Inoue, Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: inoue2@wisc.edu
Save