• Ajayamohan, R. S., , B. Khouider, , and A. J. Majda, 2013: Realistic initiation and dynamics of the Madden-Julian oscillation in a course resolution aquaplanet GCM. Geophys. Res. Lett., 40, 62526257, doi:10.1002/2013GL058187.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., , and J. P. Duvel, 2012: The event-to-event variability of the boreal winter MJO. Geophys. Res. Lett., 39, L08701, doi:10.1029/2012GL051294.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296, doi:10.1175/2009JAS3030.1.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., , and G. A. Vecchi, 2003: The influence of the Madden–Julian oscillation on precipitation in Oregon and Washington. Wea. Forecasting, 18, 600613, doi:10.1175/1520-0434(2003)018<0600:TIOTMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-H., , and A. D. Del Genio, 2009: Evaluation of tropical cloud regimes in observations and a general circulation model. Climate Dyn., 32, 355369, doi:10.1007/s00382-008-0386-6.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, doi:10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , and R. S. Ajaya Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198, doi:10.1175/1520-0442(2001)014<1180:IOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60, 847864, doi:10.1175/1520-0469(2003)060<0847:MLCSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guan, B., , D. E. Waliser, , N. P. Molotch, , E. J. Fetzer, , and P. J. Neiman, 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, doi:10.1175/MWR-D-11-00087.1.

    • Search Google Scholar
    • Export Citation
  • Han, W., , D. Yuan, , W. T. Liu, , and D. J. Halkides, 2007: Intraseasonal variability of Indian Ocean sea surface temperature during boreal winter: Madden-Julian Oscillation versus submonthly forcing and processes. J. Geophys. Res., 112, C04001, doi:10.1029/2006JC003791.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , J.-K. E. Schemm, , W. Shi, , and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820, doi:10.1175/1520-0442(2000)013<0793:EPEITW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., , and M.-Y. Lee, 2005: Topographic effects on the eastward propagation and initiation of the Madden–Julian oscillation. J. Climate, 18, 795809, doi:10.1175/JCLI-3292.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., , B. J. Hoskins, , and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823839, doi:10.1175/1520-0469(1990)047<0823:TIOATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., , J.-L. Lin, , W. Wang, , D. Kim, , T. Shinoda, , and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2011: Vertical diabatic heating structure of the MJO: Intercomparison between recent reanalyses and TRMM estimates. Mon. Wea. Rev., 139, 32083233, doi:10.1175/2011MWR3636.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , M. Zhao, , and D. E. Waliser, 2012: Modulation of tropical cyclone activity by the tropical intraseasonal oscillation over the eastern Pacific in a high resolution GCM. J. Climate, 25, 65246538, doi:10.1175/JCLI-D-11-00531.1.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., , and S. S. Chen, 2014a: Equatorial dry air intrusion and related synoptic variability in MJO initiation during DYNAMO. Mon. Wea. Rev., 142, 13261343, doi:10.1175/MWR-D-13-00159.1.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., , and S. S. Chen, 2014b: ECMWF and GFS model forecast verification during DYNAMO: Multiscale variability in MJO initiation over the equatorial Indian Ocean. J. Geophys. Res. Atmos., 119, 37363755, doi:10.1002/2013JD020833.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 13081323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , and A. J. Majda, 2007: A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci., 64, 381400, doi:10.1175/JAS3833.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., , A. St-Cyr, , A. J. Majda, , and J. Tribbia, 2011: The MJO and convectively coupled waves in a course-resolution GCM with a simple multicloud parameterization. J. Atmos. Sci., 68, 240264, doi:10.1175/2010JAS3443.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , J.-S. Kug, , and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, doi:10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., , and S. J. Woolnough, 2014a: The role of air–sea coupling in the simulation of the Madden–Julian oscillation in the Hadley Centre model. Quart. J. Roy. Meteor. Soc., 140, 2272–2286, doi:10.1002/qj.2295.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., , and S. J. Woolnough, 2014b: Using a case-study approach to improve the Madden–Julian oscillation in the Hadley Centre model. Quart. J. Roy. Meteor. Soc., 140, 2491–2505, doi:10.1002/qj.2314.

    • Search Google Scholar
    • Export Citation
  • Lappen, C.-L., , and C. Schumacher, 2014: The role of tilted heating in the evolution of the MJO. J. Geophys. Res. Atmos., 119, 29662989, doi:10.1002/2013JD020638.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 13541367, doi:10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., , and D. E. Waliser, 2005: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer, 436 pp.

  • Li, C., , X. Jia, , J. Ling, , W. Zhou, , and C. Zhang, 2009: Sensitivity of MJO simulations to diabatic heating profiles. Climate Dyn., 32, 167187, doi:10.1007/s00382-008-0455-x.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Ling, J., , C. Li, , W. Zhou, , and X. Jia, 2014: To begin or not to begin? A case study on the MJO initiation problem. Theor. Appl. Climatol., 115, 231241, doi:10.1007/s00704-013-0889-x.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, doi:10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , and S. N. Stechmann, 2011: Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci., 68, 30533071, doi:10.1175/JAS-D-11-053.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, doi:10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden-Julian Oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372651, doi:10.1002/qj.49712656902.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2004: Intraseasonal variability over tropical Africa during northern summer. J. Climate, 17, 24272440, doi:10.1175/1520-0442(2004)017<2427:IVOTAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, doi:10.1002/qj.224.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677, doi:10.1175/1520-0493(1999)127<0661:TTEIBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Myers, D. S., , and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16, 929950, doi:10.1175/1520-0442(2003)016<0929:TDWVAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , I. M. Held, , and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, doi:10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., , and A. J. Matthews, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20, 26592674, doi:10.1175/JCLI4230.1.

    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., , and C. S. Bretherton, 2014: Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J. Atmos. Sci., 71, 800815, doi:10.1175/JAS-D-13-0119.1.

    • Search Google Scholar
    • Export Citation
  • Ray, P., , and C. Zhang, 2010: A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528, doi:10.1175/2009JAS3059.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., , C. J. Schreck III, , and M. A. Janiga, 2009: Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the real-time multivariate MJO indices. Mon. Wea. Rev., 137, 469478, doi:10.1175/2008MWR2595.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151097, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., , R. R. Garcia, , and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 23442367, doi:10.1175/1520-0469(1994)051<2344:PSCITP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., , and A. Kumar, 2008: The onset and life span of the Madden–Julian oscillation. Theor. Appl. Climatol., 94, 1324, doi:10.1007/s00704-007-0340-2.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325357, doi:10.1007/BF00231106.

    • Search Google Scholar
    • Export Citation
  • Stachnik, J. P., , C. Schumacher, , and P. E. Ciesielski, 2013: Total heating characteristics of the ISCCP tropical and subtropical cloud regimes. J. Climate, 26, 70977116, doi:10.1175/JCLI-D-12-00673.1.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, doi:10.1175/JCLI-D-12-00074.1.

    • Search Google Scholar
    • Export Citation
  • Thual, S., , A. J. Majda, , and S. N. Stechmann, 2014: A stochastic skeleton model for the MJO. J. Atmos. Sci., 71, 697715, doi:10.1175/JAS-D-13-0186.1.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , D. E. Waliser, , E. J. Fetzer, , B. H. Lambrigtsen, , Y. L. Yung, , and B. Wang, 2006: Vertical moist thermodynamic structure and spatial–temporal evolution of the MJO in AIRS observations. J. Atmos. Sci., 63, 24622485, doi:10.1175/JAS3782.1.

    • Search Google Scholar
    • Export Citation
  • Tian, B., , D. E. Waliser, , E. J. Fetzer, , and Y. L. Yung, 2010: Vertical moist thermodynamic structure of the Madden–Julian oscillation in atmospheric infrared sounder retrievals: An update and a comparison to ECMWF Interim Re-Analysis. Mon. Wea. Rev., 138, 45764582, doi:10.1175/2010MWR3486.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , C. Jones, , J.-K. E. Schemm, , and N. E. Graham, 1999: A statistical extended-range tropical forecast model based on the slow evolution of the Madden–Julian oscillation. J. Climate, 12, 19181939, doi:10.1175/1520-0442(1999)012<1918:ASERTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47, 397413, doi:10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , K. Kodera, , and W. Chen, 2012: Observed triggering of tropical convection by a cold surge: Implications for MJO initiation. Quart. J. Roy. Meteor. Soc., 138, 17401750, doi:10.1002/qj.1905.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , G. N. Kiladis, , and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, doi:10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., , C. Zhang, , and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., , M. Dong, , S. Gualdi, , H. H. Hendon, , E. D. Maloney, , A. Marshall, , K. R. Sperber, , and W. Wang, 2006: Simulations of the Madden-Julian oscillation in four pairs of coupled and uncoupled models. Climate Dyn., 27, 573592, doi:10.1007/s00382-006-0148-2.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., , T. Li, , and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, doi:10.1175/JCLI-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 9
PDF Downloads 21 21 3

Precursor Environmental Conditions Associated with the Termination of Madden–Julian Oscillation Events

View More View Less
  • 1 Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, and Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • 2 Department of Mathematics, and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York
© Get Permissions
Restricted access

Abstract

This study presents an analysis of the precursor environmental conditions related to the termination of Madden–Julian oscillation (MJO) events. A simple climatology is created using a real-time MJO monitoring index, documenting the locations and frequencies of MJO decay. Lead–lag composites of several atmospheric variables including temperature, moisture, and intraseasonal wind anomalies are generated from three reanalyses. There is remarkable agreement among the datasets with long-term, lower-tropospheric moisture deficits over the local domain best identifying termination events over the Indian Ocean. MJO termination in the Indian Ocean is also linked to a northward shift of the intertropical convergence zone (ITCZ) with possible lead times as much as 20 days prior to MJO decay.

Statistically significant differences in the low-level vertical velocity and specific humidity are also identified more than 10 days in advance of MJO termination events in the western Pacific, though the differences here are more symmetric about the equator. Unlike the Indian Ocean and western Pacific, MJOs that terminate over the Maritime Continent appear to be related to their own intensity rather than the downstream conditions. As such, only the strongest MJOs tend to propagate into the warm pool region.

Finally, a budget analysis is performed on the three-dimensional moisture advection equation in order to better elucidate what time scales and physical mechanisms are most important for MJO termination. The combination of intraseasonal vertical circulation anomalies coupled with the mean-state specific humidity best explain the anomalous moisture patterns associated with MJO termination, suggesting that the downstream influence of the MJO circulation can eventually lead to its future demise.

Corresponding author address: Justin P. Stachnik, Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S 233-304, Pasadena, CA 91109. E-mail: justin.p.stachnik@jpl.nasa.gov

Abstract

This study presents an analysis of the precursor environmental conditions related to the termination of Madden–Julian oscillation (MJO) events. A simple climatology is created using a real-time MJO monitoring index, documenting the locations and frequencies of MJO decay. Lead–lag composites of several atmospheric variables including temperature, moisture, and intraseasonal wind anomalies are generated from three reanalyses. There is remarkable agreement among the datasets with long-term, lower-tropospheric moisture deficits over the local domain best identifying termination events over the Indian Ocean. MJO termination in the Indian Ocean is also linked to a northward shift of the intertropical convergence zone (ITCZ) with possible lead times as much as 20 days prior to MJO decay.

Statistically significant differences in the low-level vertical velocity and specific humidity are also identified more than 10 days in advance of MJO termination events in the western Pacific, though the differences here are more symmetric about the equator. Unlike the Indian Ocean and western Pacific, MJOs that terminate over the Maritime Continent appear to be related to their own intensity rather than the downstream conditions. As such, only the strongest MJOs tend to propagate into the warm pool region.

Finally, a budget analysis is performed on the three-dimensional moisture advection equation in order to better elucidate what time scales and physical mechanisms are most important for MJO termination. The combination of intraseasonal vertical circulation anomalies coupled with the mean-state specific humidity best explain the anomalous moisture patterns associated with MJO termination, suggesting that the downstream influence of the MJO circulation can eventually lead to its future demise.

Corresponding author address: Justin P. Stachnik, Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S 233-304, Pasadena, CA 91109. E-mail: justin.p.stachnik@jpl.nasa.gov
Save