• Bacmeister, J. T., , M. F. Wehner, , R. B. Neale, , A. Gettelman, , C. Hannay, , P. H. Lauritzen, , J. M. Caron, , and J. E. Truesdale, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 30733099, doi:10.1175/JCLI-D-13-00387.1.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., , K. M. Shell, , P. R. Gent, , D. A. Bailey, , G. Danabasoglu, , K. C. Armour, , M. M. Holland, , and J. T. Kiehl, 2012: Climate sensitivity of the Community Climate System Model, version 4. J. Climate, 25, 30533070, doi:10.1175/JCLI-D-11-00290.1.

    • Search Google Scholar
    • Export Citation
  • Blackburn, M., and Coauthors, 2013: The Aqua-Planet Experiment (APE): CONTROL SST simulation. J. Meteor. Soc. Japan Ser. II, 91A, 1756, doi:10.2151/jmsj.2013-A02.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , P. N. Blossey, , and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, doi:10.1175/JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., , and K. A. Emanuel, 2013: The climate time scale in the approach to radiative-convective equilibrium. J. Adv. Model. Earth Syst., 5, 843849, doi:10.1002/jame.20049.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Demory, M.-E., , P. L. Vidale, , M. J. Roberts, , P. Berrisford, , J. Strachan, , R. Schiemann, , and M. S. Mizielinski, 2014: The role of horizontal resolution in simulating drivers of the global hydrological cycle. Climate Dyn., 42, 22012225, doi:10.1007/s00382-013-1924-4.

    • Search Google Scholar
    • Export Citation
  • Dennis, J., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, doi:10.1177/1094342011428142.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., , A. A. Wing, , and E. M. Vincent, 2014: Radiative-convective instability. J. Adv. Model. Earth Syst., 6, 7590, doi:10.1002/2013MS000270.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970, doi:10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955, doi:10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, doi:10.1175/BAMS-86-11-1609.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , R. S. Hemler, , and V. Ramaswamy, 1993: Radiative-convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, doi:10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , M. Zhao, , and B. Wyman, 2007: Dynamic radiative–convective equilibria using GCM column physics. J. Atmos. Sci., 64, 228238, doi:10.1175/JAS3825.11.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172, doi:10.1175/JCLI-D-11-00265.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., , and C.-E. Yang, 2013: Cloud-resolving modelling of aerosol indirect effects in idealised radiative-convective equilibrium with interactive and fixed sea surface temperature. Atmos. Chem. Phys., 13, 41334144, doi:10.5194/acp-13-4133-2013.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385, doi:10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241259, doi:10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385399, doi:10.1007/s00382-009-0694-5.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , B. Stevens, , I. M. Held, , M. Zhao, , D. L. Williamson, , J. G. Olson, , and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21, 49744991, doi:10.1175/2008JCLI1995.1.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , B. Stevens, , and S. Bony, 2014: Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Climate Dyn., 121, doi:10.1007/s00382-014-2138-0.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., , and I. M. Held, 2012: Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci., 69, 25512565, doi:10.1175/JAS-D-11-0257.1.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., , P. A. O’Gorman, , and L. E. Back, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate, 24, 27842800, doi:10.1175/2011JCLI3876.1.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., , and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, doi:10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations: I: The proposal. Atmos. Sci. Lett., 1, 101107, doi:10.1006/asle.2000.0019.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , J. H. Richter, , and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, doi:10.1175/2008JCLI2244.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 282 pp.

  • Park, S., , and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., , and D. L. Hartmann, 2014: The atmospheric energy constraint on global-mean precipitation change. J. Climate, 27, 757768, doi:10.1175/JCLI-D-13-00163.1.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 17841806, doi:10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Popke, D., , B. Stevens, , and A. Voigt, 2013: Climate and climate change in a radiative-convective equilibrium version of ECHAM6. J. Adv. Model. Earth Syst., 5, 114, doi:10.1029/2012MS000191.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., , and J. A. Coakley Jr., 1978: Climate modeling through radiative-convective models. Rev. Geophys. Space Phys., 16, 465489, doi:10.1029/RG016i004p00465.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., , and C. Jablonowski, 2011: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs. Mon. Wea. Rev., 139, 689710, doi:10.1175/2010MWR3488.1.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., , and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst., 4, M04001, doi:10.1029/2011MS000099.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., , and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499, doi:10.1175/2007JCLI1789.1.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2011: Response of tropical precipitation to global warming. J. Atmos. Sci., 68, 123138, doi:10.1175/2010JAS3542.1.

  • Taylor, M. A., , and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 58795895, doi:10.1016/j.jcp.2010.04.008.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , K. Goto, , and M. Satoh, 2008: A new approach to atmospheric general circulation model: Global cloud resolving model NICAM and its computational performance. SIAM J. Sci. Comput., 30, 27552776, doi:10.1137/070692273.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2014: Water cycles and climate change. Global Environ. Change, 1,3137, doi:10.1007/978-94-007-5784-4_30.

  • Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst.,6, 980–997, doi:10.1002/2013MS000276.

  • Williamson, D. L., 2013: The effect of time steps and time-scales on parametrization suites. Quart. J. Roy. Meteor. Soc., 139, 548560, doi:10.1002/qj.1992.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., , and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 5974, doi:10.1002/2013MS000269.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., , and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 12
PDF Downloads 28 28 5

Global Radiative–Convective Equilibrium in the Community Atmosphere Model, Version 5

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

In the continued effort to understand the climate system and improve its representation in atmospheric general circulation models (AGCMs), it is crucial to develop reduced-complexity frameworks to evaluate these models. This is especially true as the AGCM community advances toward high horizontal resolutions (i.e., grid spacing less than 50 km), which will require interpreting and improving the performance of many model components. A simplified global radiative–convective equilibrium (RCE) configuration is proposed to explore the implication of horizontal resolution on equilibrium climate. RCE is the statistical equilibrium in which the radiative cooling of the atmosphere is balanced by heating due to convection.

In this work, the Community Atmosphere Model, version 5 (CAM5), is configured in RCE to better understand tropical climate and extremes. The RCE setup consists of an ocean-covered Earth with diurnally varying, spatially uniform insolation and no rotation effects. CAM5 is run at two horizontal resolutions: a standard resolution of approximately 100-km grid spacing and a high resolution of approximately 25-km spacing. Surface temperature effects are considered by comparing simulations using fixed, uniform sea surface temperature with simulations using an interactive slab-ocean model. The various CAM5 configurations provide useful insights into the simulation of tropical climate as well as the model’s ability to simulate extreme precipitation events. In particular, the manner in which convection organizes is shown to be dependent on model resolution and the surface configuration (including surface temperature), as evident by differences in cloud structure, circulation, and precipitation intensity.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin A. Reed, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: kareed@ucar.edu

Abstract

In the continued effort to understand the climate system and improve its representation in atmospheric general circulation models (AGCMs), it is crucial to develop reduced-complexity frameworks to evaluate these models. This is especially true as the AGCM community advances toward high horizontal resolutions (i.e., grid spacing less than 50 km), which will require interpreting and improving the performance of many model components. A simplified global radiative–convective equilibrium (RCE) configuration is proposed to explore the implication of horizontal resolution on equilibrium climate. RCE is the statistical equilibrium in which the radiative cooling of the atmosphere is balanced by heating due to convection.

In this work, the Community Atmosphere Model, version 5 (CAM5), is configured in RCE to better understand tropical climate and extremes. The RCE setup consists of an ocean-covered Earth with diurnally varying, spatially uniform insolation and no rotation effects. CAM5 is run at two horizontal resolutions: a standard resolution of approximately 100-km grid spacing and a high resolution of approximately 25-km spacing. Surface temperature effects are considered by comparing simulations using fixed, uniform sea surface temperature with simulations using an interactive slab-ocean model. The various CAM5 configurations provide useful insights into the simulation of tropical climate as well as the model’s ability to simulate extreme precipitation events. In particular, the manner in which convection organizes is shown to be dependent on model resolution and the surface configuration (including surface temperature), as evident by differences in cloud structure, circulation, and precipitation intensity.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin A. Reed, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: kareed@ucar.edu
Save