Reconciling and Validating the Cloud Thickness and Liquid Water Path Tendencies Proposed by R. Wood and J. J. van der Dussen et al.

Mohamed S. Ghonima Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California

Search for other papers by Mohamed S. Ghonima in
Current site
Google Scholar
PubMed
Close
,
Joel R. Norris Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Joel R. Norris in
Current site
Google Scholar
PubMed
Close
,
Thijs Heus Department of Physics, Cleveland State University, Cleveland, Ohio

Search for other papers by Thijs Heus in
Current site
Google Scholar
PubMed
Close
, and
Jan Kleissl Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California

Search for other papers by Jan Kleissl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A detailed derivation of stratocumulus cloud thickness and liquid water path tendencies as a function of the well-mixed boundary layer mass, heat, and moisture budget equations is presented. The derivation corrects an error in the cloud thickness tendency equation derived by R. Wood to make it consistent with the liquid water path tendency equation derived by J. J. van der Dussen et al. The validity of the tendency equations is then tested against the output of large-eddy simulations of a typical stratocumulus-topped boundary layer case and is found to be in good agreement.

Corresponding author address: Mohamed Ghonima, 9500 Gilman Dr., EBUII – 304, La Jolla, CA 92093-0411. E-mail: mgohinma@ucsd.edu

Abstract

A detailed derivation of stratocumulus cloud thickness and liquid water path tendencies as a function of the well-mixed boundary layer mass, heat, and moisture budget equations is presented. The derivation corrects an error in the cloud thickness tendency equation derived by R. Wood to make it consistent with the liquid water path tendency equation derived by J. J. van der Dussen et al. The validity of the tendency equations is then tested against the output of large-eddy simulations of a typical stratocumulus-topped boundary layer case and is found to be in good agreement.

Corresponding author address: Mohamed Ghonima, 9500 Gilman Dr., EBUII – 304, La Jolla, CA 92093-0411. E-mail: mgohinma@ucsd.edu
Save
  • Albrecht, B. A., C. W. Fairall, D. W. Thomson, and A. B. White, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett.,17, 89–92, doi:10.1029/GL017i001p00089.

  • Blossey, P. N., and Coauthors, 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst.,5, 234–258, doi:10.1002/jame.20025.

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587–1606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc.,94, 292–309, doi:10.1002/qj.49709440106.

  • Nicholls, S., and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc., 112, 431–460, doi:10.1002/qj.49711247209.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and B. Stevens, 2009: Monte Carlo spectral integration: A consistent approximation for radiative transfer in large eddy simulations. J. Adv. Model. Earth Syst., 1, 1, doi:10.3894/JAMES.2009.1.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92 (1–2), 45–66, doi:10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003a: On entrainment rates in nocturnal marine stratocumulus. Quart. J. Roy. Meteor. Soc., 129, 3469–3493, doi:10.1256/qj.02.202.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003b: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579–593, doi:10.1175/BAMS-84-5-579.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 1443–1462, doi:10.1175/MWR2930.1.

    • Search Google Scholar
    • Export Citation
  • van der Dussen, J. J., S. R. de Roode, and A. P. Siebesma, 2014: Factors controlling rapid stratocumulus cloud thinning. J. Atmos. Sci., 71, 655–664, doi:10.1175/JAS-D-13-0114.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64, 2657–2669, doi:10.1175/JAS3942.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 2373–2423, doi:10.1175/MWR-D-11-00121.1.

  • Zhang, M., C. S. Bretherton, P. N. Blossey, S. Bony, F. Brient, and J.-C. Golaz, 2012: The CGILS experimental design to investigate low cloud feedbacks in general circulation models by using single-column and large-eddy simulation models. J. Adv. Model. Earth Syst., 4, M12001, doi:10.1029/2012MS000182.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1168 852 295
PDF Downloads 214 73 9