• Augier, P., , and E. Lindborg, 2013: A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci., 70, 22932308, doi:10.1175/JAS-D-12-0281.1.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., , S. D. Eckermann, , P. A. Newman, , L. Lait, , K. R. Chan, , M. Loewenstein, , M. H. Proffitt, , and B. L. Gary, 1996: Stratosphere horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high altitude aircraft. J. Geophys. Res., 101, 94419470, doi:10.1029/95JD03835.

    • Search Google Scholar
    • Export Citation
  • Bannon, P. R., 2005: Eulerian available energetics in moist atmospheres. J. Atmos. Sci., 62, 42384252, doi:10.1175/JAS3516.1.

  • Bierdel, L., , P. Friederichs, , and S. Bentzien, 2012: Spatial kinetic energy spectra in the convection-permitting limited-area NWP model COSMO-DE. Meteor. Z., 21, 245258, doi:10.1127/0941-2948/2012/0319.

    • Search Google Scholar
    • Export Citation
  • Brune, S., , and E. Becker, 2013: Indications of stratified turbulence in a mechanistic GCM. J. Atmos. Sci., 70, 231247, doi:10.1175/JAS-D-12-025.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, doi:10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

  • Cho, J. Y. N., , and E. Lindborg, 2001: Horizontal velocity structure functions in the upper troposphere and lower stratosphere: 1. Observations. J. Geophys. Res., 106 (D10), 10 22310 232, doi:10.1029/2000JD900814.

    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and Coauthors, 1999: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 1. Climatology. J. Geophys. Res., 104, 56975716, doi:10.1029/98JD01825.

    • Search Google Scholar
    • Export Citation
  • Davidson, P. A., 2004: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, 678 pp.

  • Davis, C. A., 2010: Simulations of subtropical cyclones in a baroclinic channel model. J. Atmos. Sci., 67, 28712892, doi:10.1175/2010JAS3411.1.

    • Search Google Scholar
    • Export Citation
  • Denis, B., , J. Côté, , and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 18121829, doi:10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1979: Stratospheric wave spectra resembling turbulence. Science, 204, 832835, doi:10.1126/science.204.4395.832.

  • Gage, K. S., 1979: Evidence for a k−5/3 law inertial range in mesoscale two-dimensional turbulence. J. Atmos. Sci., 36, 19501954, doi:10.1175/1520-0469(1979)036<1950:EFALIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gage, K. S., , and G. D. Nastrom, 1986: Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J. Atmos. Sci., 43, 729740, doi:10.1175/1520-0469(1986)043<0729:TIOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gkioulekas, E., , and K. K. Tung, 2005a: On the double cascades of energy and enstrophy in two dimensional turbulence. Part 1. Theoretical formulation. Discrete Contin. Dyn. Syst., 5B, 79102.

    • Search Google Scholar
    • Export Citation
  • Gkioulekas, E., , and K. K. Tung, 2005b: On the double cascades of energy and enstrophy in two dimensional turbulence. Part 2. Approach to the KLB limit and interpretation of experimental evidence. Discrete Contin. Dyn. Syst., 5B, 103124.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., , Y. O. Takahashi, , and W. Ohfuchi, 2008: The mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, doi:10.1029/2008JD009785.

    • Search Google Scholar
    • Export Citation
  • Klein, P., , B. L. Hua, , G. Lapeyre, , X. Capet, , S. Le Gentil, , and H. Sasaki, 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, doi:10.1175/2007JPO3773.1.

    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., , G. H. Bryan, , and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF model. Mon. Wea. Rev., 135, 38083824, doi:10.1175/2007MWR2100.1.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., , and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58, 329348, doi:10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, doi:10.1063/1.1762301.

  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749761, doi:10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259288, doi:10.1017/S0022112099004851.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2005: The effect of rotation on mesoscale energy cascade in the free atmosphere. Geophys. Res. Lett., 32, L01809, doi:10.1029/2004GL021319.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, doi:10.1017/S0022112005008128.

  • Lindborg, E., 2007: Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J. Atmos. Sci., 64, 10171025, doi:10.1175/JAS3864.1.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2009: Two comments on the surface quasigeostrophic model for the atmospheric energy spectrum. J. Atmos. Sci., 66, 10691072, doi:10.1175/2008JAS2972.1.

    • Search Google Scholar
    • Export Citation
  • Morss, R. E., , C. Snyder, , and R. Rotunno, 2009: Spectra, spatial scales, and predictability in a quasigeostrophic model. J. Atmos. Sci., 66, 31153130, doi:10.1175/2009JAS3057.1.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., , and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, doi:10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., , and I. M. Held, 2002: Entropy budget of an atmosphere in radiative–convective equilibrium. Part I: Maximum work and frictional dissipation. J. Atmos. Sci., 59, 140149, doi:10.1175/1520-0469(2002)059<0140:EBOAAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, J., , L. Zhang, , Y. Luo, , and Y. Zhang, 2014a: Mesoscale energy spectra of the mei-yu front system. Part I: Kinetic energy spectra. J. Atmos. Sci., 71, 3755, doi:10.1175/JAS-D-13-085.1.

    • Search Google Scholar
    • Export Citation
  • Peng, J., , L. Zhang, , Y. Luo, , and C. Xiong, 2014b: Mesoscale energy spectra of the mei-yu front system. Part II: Moist available potential energy spectra. J. Atmos. Sci., 71, 14101424, doi:10.1175/JAS-D-13-0319.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., , and C. Snyder, 2007: Inertia–gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Search Google Scholar
    • Export Citation
  • Ricard, D., , C. Lac, , S. Riette, , R. Legrand, , and A. Mary, 2013: Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Quart. J. Roy. Meteor. Soc., 139, 1327–1341, doi:10.1002/qj.2025.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Smith, S. A., , D. C. Fritts, , and T. E. Vanzandt, 1987: Evidence for a saturated spectrum of atmospheric gravity waves. J. Atmos. Sci., 44, 14041410, doi:10.1175/1520-0469(1987)044<1404:EFASSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., , and R. S. Lindzen, 1991: Quasigeostrophic wave-CISK in an unbounded baroclinic shear. J. Atmos. Sci., 48, 7686, doi:10.1175/1520-0469(1991)048<0076:QGWCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, Y. O., , K. Hamilton, , and W. Ohfuchi, 2006: Explicit global simulations of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, doi:10.1029/2006GL026429.

    • Search Google Scholar
    • Export Citation
  • Terasaki, K., , H. Tanaka, , and M. Satoh, 2009: Characteristics of the kinetic energy spectrum of NICAM model atmosphere. SOLA, 5, 180183, doi:10.2151/sola.2009-046.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., , and K. S. Smith, 2009: Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum. J. Atmos. Sci., 66, 450467, doi:10.1175/2008JAS2653.1.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., , and W. W. Orlando, 2003: The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824835, doi:10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., , and C. Snyder, 2009: The mesoscale kinetic energy spectrum of a baroclinic life cycle. J. Atmos. Sci., 66, 883901, doi:10.1175/2008JAS2829.1.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., , and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, doi:10.1175/JAS-D-11-0347.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 4
PDF Downloads 17 17 5

Applications of a Moist Nonhydrostatic Formulation of the Spectral Energy Budget to Baroclinic Waves. Part I: The Lower-Stratospheric Energy Spectra

View More View Less
  • 1 College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China
© Get Permissions
Restricted access

Abstract

The authors investigate the mesoscale dynamics that produce the lower-stratospheric energy spectra in idealized moist baroclinic waves, using the moist nonhydrostatic formulation of spectral energy budget of kinetic energy and available potential energy by J. Peng et al. The inclusion of moist processes energizes the lower-stratospheric mesoscale, helping to close the gap between observed and simulated energy spectra. In dry baroclinic waves, the lower-stratospheric mesoscale is mainly forced by weak downscale cascades of both horizontal kinetic energy (HKE) and available potential energy (APE) and by a weak conversion of APE to HKE. At wavelengths less than 1000 km, the pressure vertical flux divergence also has a significant positive contribution to the HKE; however, this positive contribution is largely counteracted by the negative HKE vertical flux divergence. In moist baroclinic waves, the lower-stratospheric mesoscale HKE is mainly generated by the pressure and HKE vertical flux divergences. This additional HKE is partly converted to APE and partly removed by diffusion. Another negative contribution to the mesoscale HKE is from the forcing of a visible upscale HKE cascade. Besides the conversion of HKE, however, the three-dimensional divergence also has a significant positive contribution to the mesoscale APE. With these two direct APE sources, the lower-stratospheric mesoscale also undergoes a much stronger upscale APE cascade. These results suggest that both downscale and upscale cascades through the mesoscale are permitted in the real atmosphere and the direct forcing of the mesoscale is available to feed the upscale energy cascade.

Corresponding author address: Lifeng Zhang, College of Meteorology and Oceanography, PLA University of Science and Technology, Zhong Hua Men Wai, Nanjing 211101, China. E-mail: zhanglif@yeah.net

Abstract

The authors investigate the mesoscale dynamics that produce the lower-stratospheric energy spectra in idealized moist baroclinic waves, using the moist nonhydrostatic formulation of spectral energy budget of kinetic energy and available potential energy by J. Peng et al. The inclusion of moist processes energizes the lower-stratospheric mesoscale, helping to close the gap between observed and simulated energy spectra. In dry baroclinic waves, the lower-stratospheric mesoscale is mainly forced by weak downscale cascades of both horizontal kinetic energy (HKE) and available potential energy (APE) and by a weak conversion of APE to HKE. At wavelengths less than 1000 km, the pressure vertical flux divergence also has a significant positive contribution to the HKE; however, this positive contribution is largely counteracted by the negative HKE vertical flux divergence. In moist baroclinic waves, the lower-stratospheric mesoscale HKE is mainly generated by the pressure and HKE vertical flux divergences. This additional HKE is partly converted to APE and partly removed by diffusion. Another negative contribution to the mesoscale HKE is from the forcing of a visible upscale HKE cascade. Besides the conversion of HKE, however, the three-dimensional divergence also has a significant positive contribution to the mesoscale APE. With these two direct APE sources, the lower-stratospheric mesoscale also undergoes a much stronger upscale APE cascade. These results suggest that both downscale and upscale cascades through the mesoscale are permitted in the real atmosphere and the direct forcing of the mesoscale is available to feed the upscale energy cascade.

Corresponding author address: Lifeng Zhang, College of Meteorology and Oceanography, PLA University of Science and Technology, Zhong Hua Men Wai, Nanjing 211101, China. E-mail: zhanglif@yeah.net
Save