Diagnostic Comparison of Tropospheric Blocking Events with and without Sudden Stratospheric Warming

Stephen J. Colucci Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Stephen J. Colucci in
Current site
Google Scholar
PubMed
Close
and
Michael E. Kelleher Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Search for other papers by Michael E. Kelleher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropospheric blocking events over the Northern Hemisphere during 1980–2012 were composited and contrasted according to whether they coincided in time with a sudden stratospheric warming (SSW). Those that coincided with an SSW were associated with significantly greater poleward eddy heat fluxes in the upper troposphere near the block onset time than were those blocking events not coinciding with an SSW. Furthermore, the heat fluxes in the SSW–blocking composites were concentrated inside the stratospheric polar vortex (i.e., within an area enclosed by the outer edge of an objectively defined polar vortex). Thermally forced stratospheric geopotential height rises were also significantly larger near block onset time inside the stratospheric polar vortex in the SSW–blocking composites than in the non-SSW–blocking cases. Although all the SSW events during the investigated period coincided with tropospheric blocking, the reverse was not true since there were many more blocking events than SSWs. Therefore, blocking itself was not a sufficient condition for an SSW. It is conjectured that blocking may not be a necessary condition for an SSW if persistently anomalous tropospheric heat fluxes and thermally forced, stratospheric geopotential height rises, concentrated inside the stratospheric vortex, occur in the absence of blocking.

Corresponding author address: Stephen J. Colucci, Department of Earth and Atmospheric Sciences, 1116 Bradfield Hall, Cornell University, Ithaca, NY 14853. E-mail: sjc25@cornell.edu

Abstract

Tropospheric blocking events over the Northern Hemisphere during 1980–2012 were composited and contrasted according to whether they coincided in time with a sudden stratospheric warming (SSW). Those that coincided with an SSW were associated with significantly greater poleward eddy heat fluxes in the upper troposphere near the block onset time than were those blocking events not coinciding with an SSW. Furthermore, the heat fluxes in the SSW–blocking composites were concentrated inside the stratospheric polar vortex (i.e., within an area enclosed by the outer edge of an objectively defined polar vortex). Thermally forced stratospheric geopotential height rises were also significantly larger near block onset time inside the stratospheric polar vortex in the SSW–blocking composites than in the non-SSW–blocking cases. Although all the SSW events during the investigated period coincided with tropospheric blocking, the reverse was not true since there were many more blocking events than SSWs. Therefore, blocking itself was not a sufficient condition for an SSW. It is conjectured that blocking may not be a necessary condition for an SSW if persistently anomalous tropospheric heat fluxes and thermally forced, stratospheric geopotential height rises, concentrated inside the stratospheric vortex, occur in the absence of blocking.

Corresponding author address: Stephen J. Colucci, Department of Earth and Atmospheric Sciences, 1116 Bradfield Hall, Cornell University, Ithaca, NY 14853. E-mail: sjc25@cornell.edu
Save
  • Albers, J. R., and T. Birner, 2014: Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings. J. Atmos. Sci., 71, 40284054, doi:10.1175/JAS-D-14-0026.1.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and J. R. Holton, 1988: Climatology of the stratospheric polar vortex and planetary wave breaking. J. Atmos. Sci., 45, 11231142, doi:10.1175/1520-0469(1988)045<1123:COTSPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, doi:10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Bresky, W. C., and S. J. Colucci, 1996: A forecast and analyzed cyclogenesis event diagnosed with potential vorticity. Mon. Wea. Rev., 124, 22272244, doi:10.1175/1520-0493(1996)124<2227:AFAACE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., R. W. Higgins, and V. E. Kousky, 2004: Downstream weather impacts associated with atmospheric blocking. J. Climate, 17, 48234839, doi:10.1175/JCLI-3237.1.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and J. Jones, 2012: Tropospheric precursors and stratospheric warmings. J. Climate, 25, 17791790, doi:10.1175/JCLI-D-11-00701.1.

    • Search Google Scholar
    • Export Citation
  • Evers, L. G., and P. Siegmund, 2009: Infrasonic signature of the 2009 major sudden stratospheric warming. Geophys. Res. Lett., 36, L23808, doi:10.1029/2009GL041323.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., and P. J. Kushner, 2011: The role of linear interference in the annular mode response to tropical SST forcing. J. Climate, 24, 778794, doi:10.1175/2010JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, doi:10.1029/2008JD009920.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, doi:10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Harada, Y., A. Goto, H. Nasegawa, N. Fujikawa, H. Naoe, and T. Hirooka, 2010: A major stratospheric sudden warming event in January 2009. J. Atmos. Sci., 67, 20522069, doi:10.1175/2009JAS3320.1.

    • Search Google Scholar
    • Export Citation
  • Hinssen, Y. B. L., and M. H. P. Ambaum, 2010: Relation between the 100-hPa heat flux and stratospheric potential vorticity. J. Atmos. Sci., 67, 40174027, doi:10.1175/2010JAS3569.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Academic Press, 535 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and M. Flatau, 2010: Hindcasting the January 2009 Arctic sudden stratospheric warming and its influence on the Arctic oscillation with unified parameterization of orographic drag in NOGAPS. Part I: Extended-range stand-alone forecast. Wea. Forecasting, 25, 16281644, doi:10.1175/2010WAF2222421.1.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, doi:10.1002/qj.620.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., K. Kruger, J. L. Sabutis, S. A. Sena, and S. Pawson, 2005: The remarkable 2003-2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J. Geophys. Res., 110, D04107, doi:10.1029/2004JD005367.

    • Search Google Scholar
    • Export Citation
  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, doi:10.1029/2009GL038776.

    • Search Google Scholar
    • Export Citation
  • Matthewman, N. J., J. G. Esler, A. J. Charlton-Perez, and L. M. Polvani, 2009: A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate, 22, 15661585, doi:10.1175/2008JCLI2365.1.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., H. Nakamura, and Y. J. Orsolini, 2010: Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys. Res. Lett., 37, L13805, doi:10.1029/2010GL043551.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., H. Nakamura, and Y. J. Orsolini, 2011: Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. J. Climate, 24, 64086423, doi:10.1175/JCLI-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743755, doi:10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peters, D., P. Vargin, and H. Kornich, 2007: A study of the zonally asymmetric tropospheric forcing of the austral vortex splitting during September 2002. Tellus, 59, 384394, doi:10.1111/j.1600-0870.2007.00228.x.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity as a precursor to extreme stratospheric events and subsequent anomalous surface weather. J. Climate, 17, 35483554, doi:10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Quiroz, R. S., 1986: The association of stratospheric warmings with tropospheric blocking. J. Geophys. Res., 91, 52775285, doi:10.1029/JD091iD04p05277.

    • Search Google Scholar
    • Export Citation
  • Sjoberg, J. P., and T. Birner, 2012: Transient tropospheric forcing of sudden stratospheric warmings. J. Atmos. Sci., 69, 34203432, doi:10.1175/JAS-D-11-0195.1.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., C. G. Fletcher, and P. J. Kushner, 2010: The role of linear interference in the annular mode response to extratropical surface forcing. J. Climate, 23, 60366050, doi:10.1175/2010JCLI3606.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2014: Predictability of major stratospheric sudden warmings of the vortex split type: Case study of the 2002 southern event and the 2009 and 1989 northern events. J. Atmos. Sci., 71, 28862904, doi:10.1175/JAS-D-13-078.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Woollings, T., A. Charlton-Perez, S. Ineson, A. G. Marshall, and G. Masato, 2010: Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res., 116, D06108, doi:10.1029/2009JD012742.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 404 101 20
PDF Downloads 346 107 18