Idealized Quasi-Biennial Oscillations in an Ensemble of Dry GCM Dynamical Cores

Weiye Yao Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Weiye Yao in
Current site
Google Scholar
PubMed
Close
and
Christiane Jablonowski Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Christiane Jablonowski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The paper demonstrates that quasi-biennial oscillation (QBO)-like oscillations can be simulated in an ensemble of dry GCM dynamical cores that are driven by a simple Held–Suarez temperature relaxation and low-level Rayleigh friction. The tropical stratospheric circulations of four dynamical cores, which are options in NCAR’s Community Atmosphere Model, version 5 (CAM5), are intercompared. These are the semi-Lagrangian (SLD) and Eulerian (EUL) spectral transform, finite-volume (FV), and spectral element (SE) dynamical cores. The paper investigates how the model design choices impact the wave generation, propagation, and dissipation mechanisms in the equatorial region. SLD, EUL, and SE develop spontaneous QBO-like oscillations in the upper equatorial stratosphere, whereas FV does not sustain the oscillation. Transformed Eulerian-mean (TEM) analyses reveal that resolved waves are the dominant drivers of the QBOs. However, the Eliassen–Palm flux divergence is strongly counteracted by the TEM momentum budget residual, which represents the forcing by diffusion and thermal damping. Interestingly, a reversed Brewer–Dobson circulation accelerates the downward propagation of the SLD’s QBO, whereas the EUL’s and SE’s QBOs are slowed by a mean ascent. Waves are abundant in the SLD’s, EUL’s, and SE’s tropical atmosphere despite the absence of moist convection as a typical wave trigger. Dynamic instabilities are suggested as a wave-triggering mechanism in the troposphere and wave-dissipation process in the stratosphere. In particular, there are indications that the increased occurrences of strongly negative instability indicators in SLD, EUL, and SE are related to more vigorous wave activities and higher magnitudes of the resolved wave forcing in comparison to FV.

Corresponding author address: Weiye Yao, Department of Atmospheric, Oceanic and Space Sciences, 2455 Hayward St., Ann Arbor, MI 48109. E-mail: weiyeyao@umich.edu

Abstract

The paper demonstrates that quasi-biennial oscillation (QBO)-like oscillations can be simulated in an ensemble of dry GCM dynamical cores that are driven by a simple Held–Suarez temperature relaxation and low-level Rayleigh friction. The tropical stratospheric circulations of four dynamical cores, which are options in NCAR’s Community Atmosphere Model, version 5 (CAM5), are intercompared. These are the semi-Lagrangian (SLD) and Eulerian (EUL) spectral transform, finite-volume (FV), and spectral element (SE) dynamical cores. The paper investigates how the model design choices impact the wave generation, propagation, and dissipation mechanisms in the equatorial region. SLD, EUL, and SE develop spontaneous QBO-like oscillations in the upper equatorial stratosphere, whereas FV does not sustain the oscillation. Transformed Eulerian-mean (TEM) analyses reveal that resolved waves are the dominant drivers of the QBOs. However, the Eliassen–Palm flux divergence is strongly counteracted by the TEM momentum budget residual, which represents the forcing by diffusion and thermal damping. Interestingly, a reversed Brewer–Dobson circulation accelerates the downward propagation of the SLD’s QBO, whereas the EUL’s and SE’s QBOs are slowed by a mean ascent. Waves are abundant in the SLD’s, EUL’s, and SE’s tropical atmosphere despite the absence of moist convection as a typical wave trigger. Dynamic instabilities are suggested as a wave-triggering mechanism in the troposphere and wave-dissipation process in the stratosphere. In particular, there are indications that the increased occurrences of strongly negative instability indicators in SLD, EUL, and SE are related to more vigorous wave activities and higher magnitudes of the resolved wave forcing in comparison to FV.

Corresponding author address: Weiye Yao, Department of Atmospheric, Oceanic and Space Sciences, 2455 Hayward St., Ann Arbor, MI 48109. E-mail: weiyeyao@umich.edu
Save
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1987: On the interpretation of the Eliassen–Palm flux divergence. Quart. J. Roy. Meteor. Soc., 113, 323338, doi:10.1002/qj.49711347518.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. D. Mahlman, and R. W. Sinclair, 1983: Eliassen–Palm diagnostics of wave-mean flow interaction in the GFDL “SKYHI” general circulation model. J. Atmos. Sci., 40, 27682784, doi:10.1175/1520-0469(1983)040<2768:ETWATM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical process of the UCLA general circulation model. Methods in Computational Physics, J. Chang, Ed., Academic Press, 173–265, doi:10.1016/B978-0-12-460817-7.50009-4.

  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487490, doi:10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, doi:10.1029/1999RG000073.

  • Boville, B. A., 1986: Wave–mean flow interactions in a general circulation model of the troposphere and stratosphere. J. Atmos. Sci., 43, 17111725, doi:10.1175/1520-0469(1986)043<1711:WFIIAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469485, doi:10.1175/1520-0442(1991)004<0469:SOSCTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, doi:10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Choi, W., H. Lee, W. B. Grant, J. H. Park, J. R. Holton, K.-M. Lee, and B. Naujokat, 2002: On the secondary meridional circulation associated with the quasi-biennial oscillation. Tellus, 54B, 395406, doi:10.1034/j.1600-0889.2002.201286.x.

    • Search Google Scholar
    • Export Citation
  • Dennis, J., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, doi:10.1177/1094342011428142.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1981: On the inertial stability of the equatorial middle atmosphere. J. Atmos. Sci., 38, 23542364, doi:10.1175/1520-0469(1981)038<2354:OTISFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1991: Nonlinear propagation of zonal winds in an atmosphere with Newtonian cooling and equatorial wavedriving. J. Atmos. Sci., 48, 236263, doi:10.1175/1520-0469(1991)048<0236:NPOZWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 05326 076, doi:10.1029/96JD02999.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 2000: Inferences about QBO dynamics from the atmospheric “tape recorder” effect. J. Atmos. Sci., 57, 230246, doi:10.1175/1520-0469(2000)057<0230:IAQDFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebdon, R. A., 1975: The quasi-biennial oscillation and its association with tropospheric circulation patterns. Meteor. Mag., 104, 282297.

    • Search Google Scholar
    • Export Citation
  • Ern, M., and P. Preusse, 2009: Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophys. Res. Lett., 36, 21 801, doi:10.1029/2009GL040493.

    • Search Google Scholar
    • Export Citation
  • Ern, M., and Coauthors, 2014: Interaction of gravity waves with the QBO: A satellite perspective. J. Geophys. Res. Atmos., 119, 23292355, doi:10.1002/2013JD020731.

    • Search Google Scholar
    • Export Citation
  • Evan, S., M. J. Alexander, and J. Dudhia, 2012: WRF simulations of convectively generated gravity waves in opposite QBO phases. J. Geophys. Res.,117, D12117, doi:10.1029/2011JD017302.

  • Flury, T., D. L. Wu, and W. G. Read, 2013: Variability in the speed of the Brewer–Dobson circulation as observed by Aura/MLS. Atmos. Chem. Phys., 13, 45634575, doi:10.5194/acp-13-4563-2013.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., 1982: Shear excitation of atmospheric gravity waves. J. Atmos. Sci., 39, 19361952, doi:10.1175/1520-0469(1982)039<1936:SEOAGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., 1984: Shear excitation of atmospheric gravity waves. Part II: Nonlinear radiation from a free shear layer. J. Atmos. Sci., 41, 524537, doi:10.1175/1520-0469(1984)041<0524:SEOAGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and P. K. Rastogi, 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20, 12471277, doi:10.1029/RS020i006p01247.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 12731289, doi:10.1175/2011JAS3665.1.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29, 1245, doi:10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19, 38823901, doi:10.1175/JCLI3830.1.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1984: Mean wind evolution through the quasi-biennial cycle in the tropical lower stratosphere. J. Atmos. Sci., 41, 21132125, doi:10.1175/1520-0469(1984)041<2113:MWETTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, and R. S. Hemler, 2001: Spontaneous stratospheric QBO-like oscillations simulated by the GFDL SKYHI general circulation model. J. Atmos. Sci., 58, 32713292, doi:10.1175/1520-0469(2001)058<3271:SSQLOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hayashi, H., M. Shiotani, and J. C. Gille, 2002: Horizontal wind disturbances induced by inertial instability in the equatorial middle atmosphere as seen in rocketsonde observations. J. Geophys. Res.,107, 4228, doi:10.1029/2001JD000922.

  • Haynes, P. H., 1998: The latitudinal structure of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 124, 26452670, doi:10.1002/qj.49712455206.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., C. B. Leovy, J. C. Gille, and P. L. Bailey, 1987: Quasi-stationary zonally asymmetric circulations in the equatorial lower mesosphere. J. Atmos. Sci., 44, 22192236, doi:10.1175/1520-0469(1987)044<2219:QSZACI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, Inc., 535 pp.

  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, doi:10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, doi:10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and S. Yoden, 1998: Wave–mean flow interaction associated with a QBO-like oscillation simulated in a simplified GCM. J. Atmos. Sci., 55, 502526, doi:10.1175/1520-0469(1998)055<0502:WMFIAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., 1998: Test der dynamik zweier globaler wettervorhersagemodelle des Deutschen Wetterdienstes: Der Held–Suarez test. M.S. thesis, Dept. of Meteorology, University of Bonn, 140 pp.

  • Jablonowski, C., and D. L. Williamson, 2011: The pros and cons of diffusion, filters, and fixers in atmospheric general circulation models. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Lecture Notes in Science and Engineering, Vol. 80, Springer, 381–493.

  • Kawatani, Y., S. Watanabe, K. Sato, T. J. Dunkerton, S. Miyahara, and M. Takahashi, 2010: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963980, doi:10.1175/2009JAS3222.1.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Hamilton, and S. Watanabe, 2011: The quasi-biennial oscillation in a double CO2 climate. J. Atmos. Sci., 68, 265283, doi:10.1175/2010JAS3623.1.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Hamilton, and A. Noda, 2012: The effects of changes in sea surface temperature and CO2 concentration on the quasi-biennial oscillation. J. Atmos. Sci., 69, 17341749, doi:10.1175/JAS-D-11-0265.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., S. Eckermann, and H. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models—Survey article. Atmos.–Ocean, 41, 6598, doi:10.3137/ao.410105.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., A. C. Bushell, D. R. Jackson, and H.-Y. Chun, 2013: Impacts of introducing a convective gravity-wave parameterization upon the QBO in the Met Office Unified Model. Geophys. Res. Lett., 40, 18731877, doi:10.1002/grl.50353.

    • Search Google Scholar
    • Export Citation
  • Krismer, T. R., 2014: Wave-mean flow interactions driving the quasi-biennial oscillation in ECHAM6. Max-Planck Institut für Meteorologie Tech. Rep. 149, 79 pp. [Available online at http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/WEB_BzE_149.pdf.]

  • Krismer, T. R., and M. A. Giorgetta, 2014: Wave forcing of the quasi-biennial oscillation in the Max Planck Institute Earth System Model. J. Atmos. Sci., 71, 19852006, doi:10.1175/JAS-D-13-0310.1.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport scheme. Mon. Wea. Rev., 124, 20462070, doi:10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, doi:10.1029/JC086iC10p09707.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 10951107, doi:10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and L. Guez, 2013: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res. Atmos., 118, 88978909, doi:10.1002/jgrd.50705.

    • Search Google Scholar
    • Export Citation
  • Magaña, V., and M. Yanai, 1995: Mixed Rossby–gravity waves triggered by lateral forcing. J. Atmos. Sci., 52, 14731486, doi:10.1175/1520-0469(1995)052<1473:MRWTBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and A. A. Scaife, 2009: Impact of the QBO on surface winter climate. J. Geophys. Res.,114, D18110, doi:10.1029/2009JD011737.

  • McCalpin, J. D., 1988: A quantitative analysis of the dissipation inherent in semi-Lagrangian advection. Mon. Wea. Rev., 116, 23302336, doi:10.1175/1520-0493(1988)116<2330:AQAOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naoe, H., and K. Shibata, 2010: Equatorial quasi-biennial oscillation influence on northern winter extratropical circulation. J. Geophys. Res.,115, D19102, doi:10.1029/2009JD012952.

  • Naujokat, B., 1986: An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci., 43, 18731880, doi:10.1175/1520-0469(1986)043<1873:AUOTOQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, National Center for Atmospheric Research, Boulder, Colorado, 282 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Nissen, K. M., P. Braesicke, and U. Langematz, 2000: QBO, SAO, and tropical waves in the Berlin TSM GCM: Sensitivity to radiation, vertical resolution, and convection. J. Geophys. Res., 105, 24 77124 790, doi:10.1029/2000JD900270.

    • Search Google Scholar
    • Export Citation
  • Orr, A., P. Bechthold, J. Scinocca, M. Ern, and M. Janiskova, 2010: Improved middle atmosphere climate and forecasts in the ECMWF model through a non-orographic gravity wave drag parameterization. J. Climate, 23, 59055926, doi:10.1175/2010JCLI3490.1.

    • Search Google Scholar
    • Export Citation
  • Osprey, S. M., L. J. Gray, S. C. Hardiman, N. Butchart, and T. J. Hinton, 2013: Stratospheric variability in twentieth-century CMIP5 simulations of the Met Office Climate Model: High top versus low top. J. Climate, 26, 15951606, doi:10.1175/JCLI-D-12-00147.1.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D. J., and M. H. Hitchman, 1992: Inertial instability and Rossby wave breaking in a numerical model. J. Atmos. Sci., 49, 9911002, doi:10.1175/1520-0469(1992)049<0991:IIARWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pascoe, C. L., L. J. Gray, S. A. Crooks, M. N. Juckes, and M. P. Baldwin, 2005: The quasi-biennial oscillation: Analysis using ERA–40 data. J. Geophys. Res.,110, D08105, doi:10.1029/2004JD004941.

  • Pawson, S., and M. Fiorino, 1998: A comparison of reanalyses in the tropical stratosphere. Part 2: The quasi-biennial oscillation. Climate Dyn., 14, 645658, doi:10.1007/s003820050247.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., H. Teitelbaum, and V. Zeitlin, 2003: Inertia gravity wave generation by the tropospheric midlatitude jet as given by the Fronts and Atlantic Storm-Track Experiment radio soundings. J. Geophys. Res., 108, 4686, doi:10.1029/2003JD003535.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1977: The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci., 34, 18471858, doi:10.1175/1520-0469(1977)034<1847:TIOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. C. Bell, 1982: A model of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108, 335352, doi:10.1002/qj.49710845604.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., A. Solomon, and J. Bacmeister, 2014: On the simulation of the quasi-biennial oscillation in the Community Atmosphere Model, version 5. J. Geophys. Res. Atmos., 119, 30453062, doi:10.1002/2013JD021122.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100, 51735191, doi:10.1029/94JD03122.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, D. Stainforth, W. A. Norton, and J. Austin, 2000: Realistic quasi-biennial oscillations in a simulation of the global climate. Geophys. Res. Lett., 27, 34813484, doi:10.1029/2000GL011625.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59, 14731489, doi:10.1175/1520-0469(2002)059<1473:IOASGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schirber, S., E. Manzini, and M. J. Alexander, 2014: A convection-based gravity wave parameterization in a general circulation model: Implementation and improvements on the QBO. J. Adv. Model. Earth Syst., 6, 264279, doi:10.1002/2013MS000286.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., A. R. Douglass, R. S. Stolarski, S. Pawson, S. E. Strahan, and W. Read, 2008: Comparison of lower stratospheric tropical mean vertical velocities. J. Geophys. Res., 113, D24109, doi:10.1029/2008JD010221.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: Technical note: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074, doi:10.5194/acp-8-7055-2008.

    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., N. Butchart, and S. C. Hardiman, 2012: The Brewer–Dobson circulation inferred from ERA-Interim. Quart. J. Roy. Meteor. Soc., 138, 878888, doi:10.1002/qj.966.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., W. Norton, A. Iwi, and P. Haynes, 2001: Influence of the quasi-biennial oscillation on isentropic transport and mixing in the tropics and subtropics. J. Geophys. Res., 106, 14 327, doi:10.1029/2000JD900664.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766, doi:10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2003: Extratropical forcing of convectively coupled Kelvin waves during austral winter. J. Atmos. Sci., 60, 526543, doi:10.1175/1520-0469(2003)060<0526:EFOCCK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., 1996: Simulation of the stratospheric quasi-biennial oscillation using a general circulation model. Geophys. Res. Lett., 23, 661664, doi:10.1029/95GL03413.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., 1999: Simulation of the quasi-biennial oscillation in a general circulation model. Geophys. Res. Lett., 26, 13071310, doi:10.1029/1999GL900188.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 58795895, doi:10.1016/j.jcp.2010.04.008.

    • Search Google Scholar
    • Export Citation
  • Tindall, J. C., J. Thuburn, and E. J. Highwood, 2006: Equatorial waves in the lower stratosphere. I: A novel detection method. Quart. J. Roy. Meteor. Soc., 132, 177194, doi:10.1256/qj.04.152.

    • Search Google Scholar
    • Export Citation
  • Wan, H., M. A. Giorgetta, and L. Bonaventura, 2008: Ensemble Held–Suarez test with a spectral transform model: Variability, sensitivity, and convergence. Mon. Wea. Rev., 136, 10751092, doi:10.1175/2007MWR2044.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitehead, J. P., C. Jablonowski, R. B. Rood, and P. H. Lauritzen, 2011: A stability analysis of divergence damping on a latitude–longitude grid. Mon. Wea. Rev., 139, 29762993, doi:10.1175/2011MWR3607.1.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2007: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Japan, 85B, 241269, doi:10.2151/jmsj.85B.241.

    • Search Google Scholar
    • Export Citation
  • Xue, X., H. Liu, and X. Dou, 2012: Parameterization of the inertial gravity waves and generation of the quasi-biennial oscillation. J. Geophys. Res.,117, D06103, doi:10.1029/2011JD016778.

  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2007: Convectively coupled equatorial waves. Part III: Synthesis structures and their forcing and evolution. J. Atmos. Sci., 64, 34383451, doi:10.1175/JAS4019.1.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2011: Equatorial waves in opposite QBO phases. J. Atmos. Sci., 68, 839862, doi:10.1175/2010JAS3514.1.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and L. Gray, 2012: The Influence of the QBO on the propagation of equatorial waves into the stratosphere. J. Atmos. Sci., 69, 29592982, doi:10.1175/JAS-D-11-0342.1.

    • Search Google Scholar
    • Export Citation
  • Yao, W., 2014: An assessment of the quasi-biennial oscillation (QBO) and sudden stratospheric warmings (SSWs) with idealized general circulation models. Ph.D. dissertation, University of Michigan, 178 pp.

  • Yao, W., and C. Jablonowski, 2013: Spontaneous QBO-like oscillations in an atmospheric model dynamical core. Geophys. Res. Lett., 40, 37723776, doi:10.1002/grl.50723.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., and J. R. Holton, 1988: A new look at equatorial quasi-biennial oscillation models. J. Atmos. Sci., 45, 27032717, doi:10.1175/1520-0469(1988)045<2703:ANLAEQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 388 139 18
PDF Downloads 236 78 2