The Microphysics of Ice and Precipitation Development in Tropical Cumulus Clouds

R. Paul Lawson SPEC Incorporated, Boulder, Colorado

Search for other papers by R. Paul Lawson in
Current site
Google Scholar
PubMed
Close
,
Sarah Woods SPEC Incorporated, Boulder, Colorado

Search for other papers by Sarah Woods in
Current site
Google Scholar
PubMed
Close
, and
Hugh Morrison National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The rapid glaciation of tropical cumulus clouds has been an enigma and has been debated in the literature for over 60 years. Possible mechanisms responsible for the rapid freezing have been postulated, but until now direct evidence has been lacking. Recent high-speed photography of electrostatically suspended supercooled drops in the laboratory has shown that freezing events produce small secondary ice particles. Aircraft observations from the Ice in Clouds Experiment–Tropical (ICE-T), strongly suggest that the drop-freezing secondary ice production mechanism is operating in strong, tropical cumulus updraft cores. The result is the production of small ice particles colliding with large supercooled drops (hundreds of microns up to millimeters in diameter), producing a cascading process that results in rapid glaciation of water drops in the updraft. The process was analyzed from data collected using state-of-the-art cloud particle probes during 54 Learjet penetrations of strong cumulus updraft cores over open ocean in a temperature range from 5° to −20°C. Repeated Learjet penetrations of an updraft core containing 3–5 g m−3 supercooled liquid showed an order-of-magnitude decrease in liquid mass concentration 3 min later at an elevation 1–1.5 km higher in the cloud. The aircraft observations were simulated using a one-dimensional cloud model with explicit bin microphysics. The model was initialized with drop and ice particle size distributions observed prior to rapid glaciation. Simulations show that the model can explain the observed rapid glaciation by the drop-freezing secondary ice production process and subsequent riming, which results when large supercooled drops collide with ice particles.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. R. Paul Lawson, SPEC Inc., 3022 Sterling Circle, Boulder, CO 80301. E-mail: plawson@specinc.com

Abstract

The rapid glaciation of tropical cumulus clouds has been an enigma and has been debated in the literature for over 60 years. Possible mechanisms responsible for the rapid freezing have been postulated, but until now direct evidence has been lacking. Recent high-speed photography of electrostatically suspended supercooled drops in the laboratory has shown that freezing events produce small secondary ice particles. Aircraft observations from the Ice in Clouds Experiment–Tropical (ICE-T), strongly suggest that the drop-freezing secondary ice production mechanism is operating in strong, tropical cumulus updraft cores. The result is the production of small ice particles colliding with large supercooled drops (hundreds of microns up to millimeters in diameter), producing a cascading process that results in rapid glaciation of water drops in the updraft. The process was analyzed from data collected using state-of-the-art cloud particle probes during 54 Learjet penetrations of strong cumulus updraft cores over open ocean in a temperature range from 5° to −20°C. Repeated Learjet penetrations of an updraft core containing 3–5 g m−3 supercooled liquid showed an order-of-magnitude decrease in liquid mass concentration 3 min later at an elevation 1–1.5 km higher in the cloud. The aircraft observations were simulated using a one-dimensional cloud model with explicit bin microphysics. The model was initialized with drop and ice particle size distributions observed prior to rapid glaciation. Simulations show that the model can explain the observed rapid glaciation by the drop-freezing secondary ice production process and subsequent riming, which results when large supercooled drops collide with ice particles.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. R. Paul Lawson, SPEC Inc., 3022 Sterling Circle, Boulder, CO 80301. E-mail: plawson@specinc.com
Save
  • Alfonso, L., G. B. Raga, and D. Baumgardner, 2008: The validity of the kinetic collection equation revisited. Atmos. Chem. Phys., 8, 969982, doi:10.5194/acp-8-969-2008.

    • Search Google Scholar
    • Export Citation
  • Anderson, N. F., C. A. Grainger, and J. L. Stith, 2005: Characteristics of strong updrafts in precipitation systems over the central tropical Pacific Ocean and in the Amazon. J. Appl. Meteor., 44, 731738, doi:10.1175/JAM2231.1.

    • Search Google Scholar
    • Export Citation
  • Baker, B. A., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290, doi:10.1175/JAM2398.1.

    • Search Google Scholar
    • Export Citation
  • Beard, K., 1992: Ice initiation in warm-base convective clouds: An assessment of microphysical mechanisms. Atmos. Res., 28, 125152, doi:10.1016/0169-8095(92)90024-5.

    • Search Google Scholar
    • Export Citation
  • Beswick, K. M., M. W. Gallagher, A. R. Webb, E. G. Norton, and F. Perry, 2008: Application of the Aventech AIMMS20AQ airborne probe for turbulence measurements during the Convective Storm Initiation Project. Atmos. Chem. Phys., 8, 54495463, doi:10.5194/acp-8-5449-2008.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1957: The fragmentation of freezing water drops. Bull. Obs. Puy de Dome, 65–69.

  • Brenguier, J.-L., T. Bourrianne, A. de Araujo Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Wechsler, 1998: Improvements of droplet size distribution measurements with the Fast-FSSP. J. Atmos. Oceanic Technol., 15, 10771090, doi:10.1175/1520-0426(1998)015<1077:IODSDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burrows, S. M., C. Hoose, U. Pöschl, and M. G. Lawrence, 2013: Ice nuclei in marine air: Biogenic particles or dust? Atmos. Chem. Phys., 13, 245267, doi:10.5194/acp-13-245-2013.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 1972a: Numerical simulation of precipitation development in supercooled cumuli—Part I. Mon. Wea. Rev., 100, 757763, doi:10.1175/1520-0493(1972)100<0757:NSOPDI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 1972b: Numerical simulation of precipitation development in supercooled cumuli—Part II. Mon. Wea. Rev., 100, 764784, doi:10.1175/1520-0493(1972)100<0764:NSOPDI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., R. I. Sax, D. Lamb, and A. S. R. Murty, 1978: Aircraft measurements of ice in Florida cumuli. Quart. J. Roy. Meteor. Soc., 104, 631651, doi:10.1002/qj.49710444108.

    • Search Google Scholar
    • Export Citation
  • Harris-Hobbs, R. L., and W. A. Cooper, 1987: Field evidence supporting quantitative predictions of secondary ice production rates. J. Atmos. Sci., 44, 10711082, doi:10.1175/1520-0469(1987)044<1071:FESQPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and P. Willis, 2014: Cloud conditions favoring secondary ice particle production in tropical maritime convection. J. Atmos. Sci., 71, 45004526, doi:10.1175/JAS-D-14-0093.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 42, 25232549, doi:10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1990: Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds. J. Atmos. Sci., 47, 27102722, doi:10.1175/1520-0469(1990)047<2710:RDOHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224, doi:10.1016/S0169-8095(00)00064-8.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59, 18721884, doi:10.1175/1520-0469(2002)059<1872:TVODAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos. Sci., 20, 2947, doi:10.1175/1520-0469(1963)020<0029:TGBOSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., 1965: Drop freezing through drop breakup. J. Atmos. Sci., 22, 448451, doi:10.1175/1520-0469(1965)022<0448:DFTDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 2007: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations. J. Atmos. Oceanic Technol., 24, 376389, doi:10.1175/JTECH1980.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., M. P. Bailey, J. Hallett, and G. A. Isaac, 2004: Laboratory and in situ observation of deposition growth of frozen drops. J. Appl. Meteor., 43, 612622, doi:10.1175/1520-0450(2004)043<0612:LAISOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., 1974: General description and central program of GATE. Bull. Amer. Meteor. Soc., 55, 712719.

  • Kuettner, J. P., and D. E. Parker, 1976: GATE: Report on the field phase. Bull. Amer. Meteor. Soc., 55, 1127.

  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of a cloud droplet probe and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, doi:10.5194/amt-3-1683-2010.

    • Search Google Scholar
    • Export Citation
  • Latham, J., and B. J. Mason, 1961: Generation of electric charge associated with the formation of soft hail in thunderclouds. Proc. Roy. Soc. London, A260, 537549, doi:10.1098/rspa.1961.0052.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, doi:10.5194/amt-4-1361-2011.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and W. A. Cooper, 1990: Performance of some airborne thermometers in clouds. J. Atmos. Oceanic Technol., 7, 480494, doi:10.1175/1520-0426(1990)007<0480:POSATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and P. Zuidema, 2009: Aircraft microphysical and surface-based radar observations of summertime Arctic clouds. J. Atmos. Sci., 66, 35053529, doi:10.1175/2009JAS3177.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., R. E. Stewart, and L. J. Angus, 1998: Observations and numerical simulations of the origin and development of very large snowflakes. J. Atmos. Sci., 55, 32093229, doi:10.1175/1520-0469(1998)055<3209:OANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July during FIRE ACE. J. Geophys. Res., 106, 14 98915 014, doi:10.1029/2000JD900789.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. A. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, doi:10.1175/JTECH1927.1.

    • Search Google Scholar
    • Export Citation
  • Leisner, T., T. Pander, P. Handmann, and A. Kiselev, 2014: Secondary ice processes upon heterogeneous freezing of cloud droplets. 14th Conf. on Cloud Physics and Atmospheric Radiation, Boston, MA, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/14CLOUD14ATRAD/webprogram/Paper250221.html.]

  • LeMone, M. A., 1980: On the difficulty of measuring temperature and humidity in cloud: Comments on “Shallow convection on day 261 of GATE: Mesoscale arcs.” Mon. Wea. Rev., 108, 17021705, doi:10.1175/1520-0493(1980)108<1703:OTDOMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and M. A. Lemone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 31833193, doi:10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malkus, J., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor., 11, 220237, doi:10.1175/1520-0469(1954)011<0220:SROATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malkus, J., 1957: Trade cumulus cloud groups: Some observations suggesting a mechanism of their origin. Tellus, 9A, 3344, doi:10.1111/j.2153-3490.1957.tb01851.x.

    • Search Google Scholar
    • Export Citation
  • Malkus, J., and C. Ronne, 1954: On the structure of some cumulonimbus which penetrated the high tropical atmosphere. Tellus, 6A, 351366, doi:10.1111/j.2153-3490.1954.tb01130.x.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1996: The rapid glaciation of slightly supercooled cumulus clouds. Quart. J. Roy. Meteor. Soc., 122, 357365, doi:10.1002/qj.49712253003.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2010: An improved representation of rimed snow and conversion to graupel in a multicomponent bin microphysics scheme. J. Atmos. Sci., 67, 13371360, doi:10.1175/2010JAS3250.1.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., 1968: Comparison between concentration of ice crystals in cloud and the concentration of ice nuclei. J. Rech. Atmos., 3, 119124.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., A. Ono, and E. R. Wishart, 1970: Ice particles in maritime clouds near Tasmania. Quart. J. Roy. Meteor. Soc., 96, 487508, doi:10.1002/qj.49709640910.

    • Search Google Scholar
    • Export Citation
  • O’Connor, D., B. Baker, and R. P. Lawson, 2008: Upgrades to the FSSP-100 Electronics. 15th. Int. Conf. on Clouds and Precipitation. Cancun, Mexico, Universidad Nacional Autónoma de México, P13.6. [Available online at http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Poster_13/O-Connor_extended_final.pdf.]

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Rangno, A. L., 2008: Fragmentation of freezing drops in shallow maritime frontal clouds. J. Atmos. Sci., 65, 14551466, doi:10.1175/2007JAS2295.1.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, doi:10.1175/BAMS-88-12-1912.

    • Search Google Scholar
    • Export Citation
  • Rodenhuis, D. R., 1974: The Convection Subprogram. Bull. Amer. Meteor. Soc., 55, 724730.

  • Scott, B. C., and P. V. Hobbs, 1977: A theoretical study of the evolution of mixed-phase cumulus clouds. J. Atmos. Sci., 34, 812826, doi:10.1175/1520-0469(1977)034<0812:ATSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. H. Simpson, D. A. Andrews, and M. A. Eaton, 1965: Experimental cumulus dynamics. Rev. Geophys., 3, 387431, doi:10.1029/RG003i003p00387.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., J. A. Haggerty, A. Heymsfield, and C. A. Grainger, 2004: Microphysical characteristics of tropical updrafts in clean conditions. J. Appl. Meteor., 43, 779794, doi:10.1175/2104.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1895 581 97
PDF Downloads 1498 535 57