A Parameterization of Convective Dust Storms for Models with Mass-Flux Convection Schemes

Florian Pantillon Institut für Meteorologie und Klimaforschung, Karlsruher Institut für Technologie, Karlsruhe, Germany

Search for other papers by Florian Pantillon in
Current site
Google Scholar
PubMed
Close
,
Peter Knippertz Institut für Meteorologie und Klimaforschung, Karlsruher Institut für Technologie, Karlsruhe, Germany

Search for other papers by Peter Knippertz in
Current site
Google Scholar
PubMed
Close
,
John H. Marsham Water@Leeds, National Centre for Atmospheric Science, University of Leeds, Leeds, United Kingdom

Search for other papers by John H. Marsham in
Current site
Google Scholar
PubMed
Close
, and
Cathryn E. Birch Met Office, University of Leeds, Leeds, United Kingdom

Search for other papers by Cathryn E. Birch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cold pool outflows, generated by downdrafts from moist convection, can generate strong winds and therefore uplift of mineral dust. These so-called haboob convective dust storms occur over all major dust source areas worldwide and contribute substantially to emissions in northern Africa, the world’s largest source. Most large-scale models lack convective dust storms because they do not resolve moist convection, relying instead on convection schemes. The authors suggest a parameterization of convective dust storms to account for their contribution in such large-scale models. The parameterization is based on a simple conceptual model, in which the downdraft mass flux from the convection scheme spreads out radially in a cylindrical cold pool. The parameterization is tested with a set of Met Office Unified Model runs for June and July 2006 over West Africa. It is calibrated with a convection-permitting run and applied to a convection-parameterized run. The parameterization successfully produces the extensive area of dust-generating winds from cold pool outflows over the southern Sahara. However, this area extends farther to the east and dust-generating winds occur earlier in the day than in the convection-permitting run. These biases are caused by biases in the convection scheme. It is found that the location and timing of dust-generating winds are weakly sensitive to the parameters of the conceptual model. The results demonstrate that a simple parameterization has the potential to correct a major and long-standing limitation in global dust models.

Denotes Open Access content.

Publisher’s Note: This article was revised on 4 February 2016 to include the intended caption for Fig. 10, which was incorrect when originally published.

Corresponding author address: Florian Pantillon, Forschungsbereich Troposphäre, Institut für Meteorologie und Klimaforschung, Karlsruher Institut für Technologie, Kaiserstr. 12, 76128 Karlsruhe, Germany. E-mail: florian.pantillon@kit.edu

Abstract

Cold pool outflows, generated by downdrafts from moist convection, can generate strong winds and therefore uplift of mineral dust. These so-called haboob convective dust storms occur over all major dust source areas worldwide and contribute substantially to emissions in northern Africa, the world’s largest source. Most large-scale models lack convective dust storms because they do not resolve moist convection, relying instead on convection schemes. The authors suggest a parameterization of convective dust storms to account for their contribution in such large-scale models. The parameterization is based on a simple conceptual model, in which the downdraft mass flux from the convection scheme spreads out radially in a cylindrical cold pool. The parameterization is tested with a set of Met Office Unified Model runs for June and July 2006 over West Africa. It is calibrated with a convection-permitting run and applied to a convection-parameterized run. The parameterization successfully produces the extensive area of dust-generating winds from cold pool outflows over the southern Sahara. However, this area extends farther to the east and dust-generating winds occur earlier in the day than in the convection-permitting run. These biases are caused by biases in the convection scheme. It is found that the location and timing of dust-generating winds are weakly sensitive to the parameters of the conceptual model. The results demonstrate that a simple parameterization has the potential to correct a major and long-standing limitation in global dust models.

Denotes Open Access content.

Publisher’s Note: This article was revised on 4 February 2016 to include the intended caption for Fig. 10, which was incorrect when originally published.

Corresponding author address: Florian Pantillon, Forschungsbereich Troposphäre, Institut für Meteorologie und Klimaforschung, Karlsruher Institut für Technologie, Kaiserstr. 12, 76128 Karlsruhe, Germany. E-mail: florian.pantillon@kit.edu
Save
  • Allen, C. J., R. Washington, and S. Engelstaedter, 2013: Dust emission and transport mechanisms in the central Sahara: Fennec ground-based observations from Bordj Badji Mokhtar, June 2011. J. Geophys. Res. Atmos., 118, 62126232, doi:10.1002/jgrd.50534.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, doi:10.1175/JAS-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Birch, C. E., D. J. Parker, J. H. Marsham, and G. M. Devine, 2012: The effect of orography and surface albedo on stratification in the summertime Saharan boundary layer: Dynamics and implications for dust transport. J. Geophys. Res.,117, D05105, doi:10.1029/2011JD015965.

  • Birch, C. E., J. H. Marsham, D. J. Parker, and C. M. Taylor, 2014a: The scale dependence and structure of convergence fields preceding the initiation of deep convection. Geophys. Res. Lett., 41, 47694776, doi:10.1002/2014GL060493.

    • Search Google Scholar
    • Export Citation
  • Birch, C. E., D. J. Parker, J. H. Marsham, D. Copsey, and L. Garcia-Carreras, 2014b: A seamless assessment of the role of convection in the water cycle of the West African Monsoon. J. Geophys. Res. Atmos., 119, 28902912, doi:10.1002/2013JD020887.

    • Search Google Scholar
    • Export Citation
  • Bou Karam, D., C. Flamant, P. Knippertz, O. Reitebuch, J. Pelon, M. Chong, and A. Dabas, 2008: Dust emissions over the Sahel associated with the West African monsoon intertropical discontinuity region: A representative case-study. Quart. J. Roy. Meteor. Soc., 134, 621634, doi:10.1002/qj.244.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., 1949: Structure and dynamics of the thunderstorm. Science, 110, 291294, doi:10.1126/science.110.2856.291.

  • Cakmur, R., R. Miller, and O. Torres, 2004: Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model. J. Geophys. Res.,109, D07201, doi:10.1029/2003JD004067.

  • Chaboureau, J.-P., P. Tulet, and C. Mari, 2007: Diurnal cycle of dust and cirrus over West Africa as seen from Meteosat Second Generation satellite and a regional forecast model. Geophys. Res. Lett.,34, L02822, doi:10.1029/2006GL027771.

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Fiedler, S., K. Schepanski, B. Heinold, P. Knippertz, and I. Tegen, 2013: Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J. Geophys. Res. Atmos., 118, 61006121, doi:10.1002/jgrd.50394.

    • Search Google Scholar
    • Export Citation
  • Flamant, C., J.-P. Chaboureau, D. J. Parker, C. M. Taylor, J.-P. Cammas, O. Bock, F. Timouk, and J. Pelon, 2007: Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African Monsoon. Quart. J. Roy. Meteor. Soc., 133, 11751189, doi:10.1002/qj.97.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1985: The downburst: Microburst and macroburst. Satellite and Mesometeorology Research Project Research Paper 210, Dept. of Geophysical Sciences, University of Chicago, 122 pp.

  • Garcia-Carreras, L., and Coauthors, 2013: The impact of convective cold pool outflows on model biases in the Sahara. Geophys. Res. Lett., 40, 16471652, doi:10.1002/grl.50239.

    • Search Google Scholar
    • Export Citation
  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 14291440, doi:10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., S. C. Jones, J. H. Marsham, D. J. Parker, J. M. Haywood, and V. Heuveline, 2010: The Atlantic inflow to the Saharan heat low: Observations and modelling. Quart. J. Roy. Meteor. Soc., 136, 125140, doi:10.1002/qj.429.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., and J.-P. Lafore, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part I: The models. J. Atmos. Sci., 67, 881897, doi:10.1175/2009JAS3044.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heinold, B., P. Knippertz, J. Marsham, S. Fiedler, N. Dixon, K. Schepanski, B. Laurent, and I. Tegen, 2013: The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection-permitting simulations. J. Geophys. Res. Atmos., 118, 43854400, doi:10.1002/jgrd.50402.

    • Search Google Scholar
    • Export Citation
  • Holmes, J., and S. Oliver, 2000: An empirical model of a downburst. Eng. Struct., 22, 11671172, doi:10.1016/S0141-0296(99)00058-9.

  • Hourdin, F., M. Gueye, B. Diallo, J.-L. Dufresne, L. Menut, B. Marticoréna, G. Siour, and F. Guichard, 2014: Parametrization of convective transport in the boundary layer and its impact on the representation of diurnal cycle of wind and dust emissions. Atmos. Chem. Phys. Discuss., 14, 27 42527 458, doi:10.5194/acpd-14-27425-2014.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys.,42, RG4003, doi:10.1029/2004RG000150.

  • Huneeus, N., and Coauthors, 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 77817816, doi:10.5194/acp-11-7781-2011.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., R. S. Schumacher, J. H. Ruppert Jr., D. T. Lindsey, J. E. Ruthford, and L. Kriederman, 2014: The role of convective outflow in the Waldo Canyon fire. Mon. Wea. Rev., 142, 3061–3080, doi:10.1175/MWR-D-13-00361.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., 2008: Dust emissions in the West African heat trough—The role of the diurnal cycle and of extratropical disturbances. Meteor. Z., 17, 553563, doi:10.1127/0941-2948/2008/0315.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., 2014: Meteorological aspects of dust storms. Mineral Dust, P. Knippertz and J.-B. W. Stuut, Eds., Springer Netherlands, 121–147, doi:10.1007/978-94-017-8978-3_6.

  • Knippertz, P., and M. C. Todd, 2012: Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling. Rev. Geophys., 50, RG1007, doi:10.1029/2011RG000362.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., C. Deutscher, K. Kandler, T. Müller, O. Schulz, and L. Schütz, 2007: Dust mobilization due to density currents in the Atlas region: Observations from the Saharan Mineral Dust Experiment 2006 field campaign. J. Geophys. Res.,112, D21109, doi:10.1029/2007JD008774.

  • Kocha, C., P. Tulet, J.-P. Lafore, and C. Flamant, 2013: The importance of the diurnal cycle of Aerosol Optical Depth in West Africa. Geophys. Res. Lett., 40, 785790, doi:10.1002/grl.50143.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., B. Campistron, M. Chong, F. Couvreux, F. Guichard, C. Rio, and E. Williams, 2011: Life cycle of a mesoscale circular gust front observed by a C-band Doppler radar in West Africa. Mon. Wea. Rev., 139, 13701388, doi:10.1175/2010MWR3480.1.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., D. J. Parker, C. M. Grams, B. T. Johnson, W. M. F. Grey, and A. N. Ross, 2008a: Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara. Atmos. Chem. Phys., 8, 69796993, doi:10.5194/acp-8-6979-2008.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., D. J. Parker, C. M. Grams, C. M. Taylor, and J. M. Haywood, 2008b: Uplift of Saharan dust south of the intertropical discontinuity. J. Geophys. Res.,113, D21102, doi:10.1029/2008JD009844.

  • Marsham, J. H., C. M. Grams, and B. Möhr, 2009: Photographs of dust uplift from small-scale atmospheric features. Weather, 64, 180181, doi:10.1002/wea.390.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., P. Knippertz, N. S. Dixon, D. J. Parker, and G. M. S. Lister, 2011: The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophys. Res. Lett.,38, L16803, doi:10.1029/2011GL048368.

  • Marsham, J. H., N. S. Dixon, L. Garcia-Carreras, G. Lister, D. J. Parker, P. Knippertz, and C. E. Birch, 2013a: The role of moist convection in the West African monsoon system: Insights from continental-scale convection-permitting simulations. Geophys. Res. Lett., 40, 18431849, doi:10.1002/grl.50347.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., and Coauthors, 2013b: Meteorology and dust in the central Sahara: Observations from Fennec supersite-1 during the June 2011 Intensive Observation Period. J. Geophys. Res. Atmos., 118, 40694089, doi:10.1002/jgrd.50211.

    • Search Google Scholar
    • Export Citation
  • Marticorena, B., and G. Bergametti, 1995: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res., 100, 16 41516 430, doi:10.1029/95JD00690.

    • Search Google Scholar
    • Export Citation
  • Marticorena, B., and Coauthors, 2010: Temporal variability of mineral dust concentrations over West Africa: Analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect. Atmos. Chem. Phys., 10, 88998915, doi:10.5194/acp-10-8899-2010.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., A. P. Kuciauskas, M. Liu, Q. Ji, J. S. Reid, D. W. Breed, A. L. Walker, and A. A. Mandoos, 2008: Haboob dust storms of the southern Arabian Peninsula. J. Geophys. Res.,113, D01202, doi:10.1029/2007JD008550.

  • Nakamura, K., R. Kershaw, and N. Gait, 1996: Prediction of near-surface gusts generated by deep convection. Meteor. Appl., 3, 157167, doi:10.1002/met.5060030206.

    • Search Google Scholar
    • Export Citation
  • Nikulin, G., and Coauthors, 2012: Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Climate, 25, 60576078, doi:10.1175/JCLI-D-11-00375.1.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., 1996: Cold pools in shear. Quart. J. Roy. Meteor. Soc., 122, 16551674, doi:10.1002/qj.49712253509.

  • Pearson, K. J., R. J. Hogan, R. P. Allan, G. M. S. Lister, and C. E. Holloway, 2010: Evaluation of the model representation of the evolution of convective systems using satellite observations of outgoing longwave radiation. J. Geophys. Res.,115, D20206, doi:10.1029/2010JD014265.

  • Pearson, K. J., G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Hogan, and S. J. Woolnough, 2014: Modelling the diurnal cycle of tropical convection across the ‘grey zone.’ Quart. J. Roy. Meteor. Soc., 140, 491499, doi:10.1002/qj.2145.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., F. Guichard, and S. Mondon, 2000: A parameterization of mesoscale enhancement of surface fluxes for large-scale models. J. Climate, 13, 402421, doi:10.1175/1520-0442(2000)013<0402:APOMEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ridley, D. A., C. L. Heald, J. Pierce, and M. Evans, 2013: Toward resolution-independent dust emissions in global models: Impacts on the seasonal and spatial distribution of dust. Geophys. Res. Lett., 40, 28732877, doi:10.1002/grl.50409.

    • Search Google Scholar
    • Export Citation
  • Roberts, A. J., and P. Knippertz, 2014: The formation of a large summertime Saharan dust plume: Convective and synoptic-scale analysis. J. Geophys. Res. Atmos., 119, 17661785, doi:10.1002/2013JD020667.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shao, Y., and H. Lu, 2000: A simple expression for wind erosion threshold friction velocity. J. Geophys. Res., 105, 22 43722 443, doi:10.1029/2000JD900304.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1999: Gravity Currents: In the Environment and the Laboratory. Cambridge University Press, 262 pp.

  • Sutton, L. J., 1925: Haboobs. Quart. J. Roy. Meteor. Soc., 51, 2530, doi:10.1002/qj.49705121305.

  • Walters, D. N., and Coauthors, 2011: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919941, doi:10.5194/gmd-4-919-2011.

    • Search Google Scholar
    • Export Citation
  • Washington, R., and M. C. Todd, 2005: Atmospheric controls on mineral dust emission from the Bodélé Depression, Chad: The role of the low level jet. Geophys. Res. Lett.,32, L17701, doi:10.1029/2005GL023597.

  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 643 251 53
PDF Downloads 473 142 18