• Anthes, R. A., and T. T. Warner, 1978: Development of hydrodynamic models suitable for air pollution and other mesometerological studies. Mon. Wea. Rev., 106, 10451078, doi:10.1175/1520-0493(1978)106<1045:DOHMSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., E.-Y. Hsie, and Y.-H. Kuo, 1987: Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR Tech. Note NCAR/TN-282+STR, 66 pp.

  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130155, doi:10.1175/1520-0493(1987)115<0130:ANSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1976: Modeling the nocturnal boundary layer. Preprints, Third Symp. on Atmospheric Turbulence and Air Quality, Raleigh, NC, Amer. Meteor. Soc., 46–49.

  • Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, J. Pfafflin and E. Ziegler, Eds., Vol. 1, Gordon and Breach, 50–85.

  • Brand, S., and J. W. Blelloch, 1974: Changes in the characteristics of typhoons crossing the island of Taiwan. Mon. Wea. Rev., 102, 708713, doi:10.1175/1520-0493(1974)102<0708:CITCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, doi:10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W.-J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 12551270, doi:10.1175/1520-0493(1982)110<1255:TOEIBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J., 1955: The use of the primitive equations of motion in numerical prediction. Tellus, 7, 2226, doi:10.1111/j.2153-3490.1955.tb01138.x.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. C. L. Chan, 1984: Comments on “A numerical study of the interactions between two tropical cyclones.” Mon. Wea. Rev., 112, 16431645, doi:10.1175/1520-0493(1984)112<1643:CONSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G., J. Dudhia, and D. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-198+STR, 117 pp.

  • Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 10061022, doi:10.1175/JAS-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 17081727, doi:10.1175/2011MWR3560.1.

    • Search Google Scholar
    • Export Citation
  • Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598615, doi:10.1175/2007MWR2134.1.

    • Search Google Scholar
    • Export Citation
  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, doi:10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, doi:10.1175/WAF985.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., R. T. Williams, J.-H. Chen, and Y.-L. Chen, 2001: Topographic effects on barotropic vortex motion: No mean flow. J. Atmos. Sci., 58, 13101327, doi:10.1175/1520-0469(2001)058<1310:TEOBVM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 630 pp.

  • Lin, Y.-L., and L. C. Savage III, 2011: Effects of landfall location and the approach angle of a cyclone vortex encountering a mesoscale mountain range. J. Atmos. Sci., 68, 20952106, doi:10.1175/2011JAS3720.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., J. Han, D. W. Hamilton, and C.-Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534562, doi:10.1175/1520-0469(1999)056<0534:OIOADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 18491866, doi:10.1175/JAS3439.1.

    • Search Google Scholar
    • Export Citation
  • Roux, F., and F. D. Marks Jr., 1991: Eyewall evolution in Hurricane Hugo deduced from successive airborne Doppler observations. Preprints, 19th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 558–563.

  • Smith, R. B., and D. F. Smith, 1995: Pseudoinviscid wake formation by mountains in shallow-water flow with a drifting vortex. J. Atmos. Sci., 52, 436454, doi:10.1175/1520-0469(1995)052<0436:PWFBMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, C. K., and J. C. L. Chan, 2013: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 1578–1589, doi:10.1002/qj.2240.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-T., 1980: Prediction of the movement and strength of typhoons in Taiwan and its vicinity (in Chinese). National Science Council Research Rep. 108, 100 pp.

  • Willoughby, H. E., and M. E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132, 30333048, doi:10.1175/MWR2831.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., 2001: Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 15331549, doi:10.1175/1520-0493(2001)129<1533:NSOTGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., 2013: Typhoon Morakot: Key findings from the journal TAO for improving prediction of extreme rains at landfall. Bull. Amer. Meteor. Soc., 94, 155160, doi:10.1175/BAMS-D-11-00155.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123, 6992, doi:10.1175/1520-0493(1995)123<0069:PVDOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and K. A. Emanuel, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical Storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93109, doi:10.1175/1520-0493(1995)123<0093:PVDOHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 6780, doi:10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeh, T.-C., and R. L. Elsberry, 1993: Interaction of typhoons with the Taiwan orography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 31933212, doi:10.1175/1520-0493(1993)121<3193:IOTWTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, doi:10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 124 13
PDF Downloads 252 120 9

Influence of Mesoscale Topography on Tropical Cyclone Tracks: Further Examination of the Channeling Effect

View More View Less
  • 1 Department of Atmospheric Science, National Taiwan University, Taipei, Taiwan
Restricted access

Abstract

Observations have documented typhoons experiencing pronounced track deflection before making landfall in Taiwan. In this study, idealized full-physics model experiments are conducted to assess the orographic influence on tropical cyclone (TC) track. An intense and westward-moving TC is simulated to approach the bell-shaped terrain imitating the Taiwan topography. Sensitivity numerical experiments are carried out to evaluate the topographic effect under different flow regimes and parameters, such as TC intensity, terrain height, and incident angle of the TC movement toward the topography. All the presented simulated storms experience southward track deflection prior to landfall. Different from the mechanism related to the channeling-effect-induced low-level northerly jet as suggested in previous studies, this study indicates the leading role of the northerly asymmetric flow in the midtroposphere in causing the southward deflection of the simulated TC tracks. The midtropospheric northerly asymmetric flow forms as a result of the wind speeds restrained east of the storm center and winds enhanced/maintained west of the storm center. In all, this study highlights a new mechanism that contributes to the terrain-induced southward track deflection in addition to the traditional channeling effect.

Corresponding author address: Chun-Chieh Wu, Department of Atmospheric Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan. E-mail: cwu@typhoon.as.ntu.edu.tw

Abstract

Observations have documented typhoons experiencing pronounced track deflection before making landfall in Taiwan. In this study, idealized full-physics model experiments are conducted to assess the orographic influence on tropical cyclone (TC) track. An intense and westward-moving TC is simulated to approach the bell-shaped terrain imitating the Taiwan topography. Sensitivity numerical experiments are carried out to evaluate the topographic effect under different flow regimes and parameters, such as TC intensity, terrain height, and incident angle of the TC movement toward the topography. All the presented simulated storms experience southward track deflection prior to landfall. Different from the mechanism related to the channeling-effect-induced low-level northerly jet as suggested in previous studies, this study indicates the leading role of the northerly asymmetric flow in the midtroposphere in causing the southward deflection of the simulated TC tracks. The midtropospheric northerly asymmetric flow forms as a result of the wind speeds restrained east of the storm center and winds enhanced/maintained west of the storm center. In all, this study highlights a new mechanism that contributes to the terrain-induced southward track deflection in addition to the traditional channeling effect.

Corresponding author address: Chun-Chieh Wu, Department of Atmospheric Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan. E-mail: cwu@typhoon.as.ntu.edu.tw
Save