• Barker, H. W., 2008: Overlap of fractional cloud for radiation calculations in GCMs: A global analysis using CloudSat and CALIPSO data. J. Geophys. Res., 113, D00A01, doi:10.1029/2007JD009677.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and P. J. Rasch, 2002: Parameterizing vertically coherent cloud distributions. J. Atmos. Sci., 59, 21652182, doi:10.1175/1520-0469(2002)059<2165:PVCCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • CSU, 2013: GEOPROF. CloudSat Data Processing Center, Colorado State University, accessed February 2013. [Available online at http://cswww.cira.colostate.edu/data_dist/OrderData.php.]

  • CSU, 2014: GEOPROF-LIDAR. CloudSat Data Processing Center, Colorado State University, accessed December 2014. [Available online at http://cswww.cira.colostate.edu/data_dist/OrderData.php.]

  • CSU, 2015: 2C-RAIN-PROFILE_GRANULE. CloudSat Data Processing Center, Colorado State University, accessed February 2015. [Available online at http://cswww.cira.colostate.edu/data_dist/OrderData.php.]

  • Geleyn, J. F., and A. Hollingsworth, 1979: An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Contrib. Atmos. Phys., 52, 116.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., and G. L. Stephens, 2007: Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys. Res. Lett., 34, L09811, doi:10.1029/2007GL029335.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., 1972: Ice crystal terminal velocities. J. Atmos. Sci., 29, 13481357, doi:10.1175/1520-0469(1972)029<1348:ICTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. J. Illingworth, 2000: Deriving cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc., 126, 29032909, doi:10.1002/qj.49712656914.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. J. Illingworth, 2003: Parameterizing ice cloud inhomogeneity and the overlap of inhomogeneities using cloud radar data. J. Atmos. Sci., 60, 756767, doi:10.1175/1520-0469(2003)060<0756:PICIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kato, S., S. Sun-Mack, W. F. Miller, F. G. Rose, Y. Chen, P. Minnis, and B. A. Wielicki, 2010: Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res., 115, D00H28, doi:10.1029/2009JD012277.

    • Search Google Scholar
    • Export Citation
  • Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm rain from CloudSat. J. Geophys. Res.,116, D20209, doi:10.1029/2011JD016076.

  • L’Ecuyer, T. S., and G. L. Stephens, 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41, 272285, doi:10.1175/1520-0450(2002)041<0272:AEBPRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., J. Huang, K. Stamnes, T. Wang, Q. Lv, and H. Jin, 2015: A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmos. Chem. Phys., 15, 519536, doi:10.5194/acp-15-519-2015.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and B. E. Mapes, 2004: Wind shear effects on cloud-radiation feedback in the western Pacific warm pool. Geophys. Res. Lett.,31, L16118, doi:10.1029/2004GL020199.

  • Mace, G. G., 2007: Level 2 GEOPROF product process description interface control document algorithm version 5.3. Cooperative Institute for Research in the Atmosphere Tech. Rep., 44 pp. [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-GEOPROF_PDICD.P_R04.20070628.pdf.]

  • Mace, G. G., and S. Benson-Troth, 2002: Cloud-layer overlap characteristics derived from long-term cloud radar data. J. Climate, 15, 25052515, doi:10.1175/1520-0442(2002)015<2505:CLOCDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar–lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 94419462, doi:10.1002/2013JD021374.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using CloudSat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., and S. Clough, 1997: Shortwave and longwave enhancements in the Rapid Radiative Transfer Model. Proc. Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting, San Antonio, TX, U.S. Department of Energy, 409–413. [Available online at https://www.arm.gov/publications/proceedings/conf07/extended_abs/mlawer_ej.pdf?id=14.]

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., and Y. Fouquart, 1986: The overlapping of cloud layers in shortwave radiation parameterizations. J. Atmos. Sci., 43, 321328, doi:10.1175/1520-0469(1986)043<0321:TOOCLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., H. Barker, J. Cole, M. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 136, 47734798, doi:10.1175/2008MWR2363.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. Del Genio, G. G. Mace, S. Benson, E. E. Clothiaux, and P. Kollias, 2008: Impact of dynamics and atmospheric state on cloud vertical overlap. J. Climate, 21, 17581770, doi:10.1175/2007JCLI1828.1.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and R. W. M. Wedderburn, 1972: Generalized linear models. J. Roy. Stat. Soc., A135, 370384, doi:10.2307/2344614.

  • Oreopoulos, L., and P. Norris, 2011: An analysis of cloud overlap at a midlatitude atmospheric observation facility. Atmos. Chem. Phys., 11, 55575567, doi:10.5194/acp-11-5557-2011.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., D. Lee, Y. Sud, and M. Suarez, 2012: Radiative impacts of cloud heterogeneity and overlap in an atmospheric General Circulation Model. Atmos. Chem. Phys., 12, 90979111, doi:10.5194/acp-12-9097-2012.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J. J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, doi:10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., H. W. Barker, M. F. Khairoutdinov, J. Li, and D. A. Randall, 2004: Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quart. J. Roy. Meteor. Soc., 130, 20472067, doi:10.1256/qj.03.99.

    • Search Google Scholar
    • Export Citation
  • Räisänen, P., H. W. Barker, and J. N. S. Cole, 2005: The Monte Carlo independent column approximation’s conditional random noise: Impact on simulated climate. J. Climate, 18, 47154730, doi:10.1175/JCLI3556.1.

    • Search Google Scholar
    • Export Citation
  • Shonk, J. K., R. J. Hogan, J. M. Edwards, and G. G. Mace, 2010: Effect of improving representation of horizontal and vertical cloud structure on the Earth’s global radiation budget. Part I: Review and parametrization. Quart. J. Roy. Meteor. Soc., 136, 11911204, doi:10.1002/qj.647.

    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., D. J. Parker, J. Delanoë, N. S. Dixon, R. J. Hogan, P. Knippertz, R. I. Maidment, and J. H. Marsham, 2011: The vertical cloud structure of the West African monsoon: A 4 year climatology using CloudSat and CALIPSO. J. Geophys. Res.,116, D22205, doi:10.1029/2011JD016029.

  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and F. Di Giuseppe, 2007: Generalizing cloud overlap treatment to include solar zenith angle effects on cloud geometry. J. Atmos. Sci., 64, 21162125, doi:10.1175/JAS3925.1.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and A. A. Adebiyi, 2012: Using CloudSat cloud retrievals to differentiate satellite-derived rainfall products over West Africa. J. Hydrometeor., 13, 18101816, doi:10.1175/JHM-D-12-039.1.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and F. Di Giuseppe, 2015: An interpretation of cloud overlap statistics. J. Atmos. Sci., doi:10.1175/JAS-D-14-0278.1, 72, 2877–2889.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., A. Diongue-Niang, D. J. Parker, and C. D. Thorncroft, 2005: The African easterly jet in the ECMWF Integrated Forecast System: 4D-Var analysis. Quart. J. Roy. Meteor. Soc., 131, 28612886, doi:10.1256/qj.04.136.

    • Search Google Scholar
    • Export Citation
  • Willén, U., S. Crewell, H. K. Baltink, and O. Sievers, 2005: Assessing model predicted vertical cloud structure and cloud overlap with radar and lidar ceilometer observations for the Baltex Bridge Campaign of CLIWA-NET. Atmos. Res., 75, 227255, doi:10.1016/j.atmosres.2004.12.008.

    • Search Google Scholar
    • Export Citation
  • Wolfinger, R., and M. O’Connell, 1993: Generalized linear mixed models a pseudo-likelihood approach. J. Stat. Comput. Simul., 48, 233243, doi:10.1080/00949659308811554.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 131 73 5
PDF Downloads 83 46 0

Generalizing Cloud Overlap Treatment to Include the Effect of Wind Shear

View More View Less
  • 1 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
  • | 2 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
Restricted access

Abstract

Six months of CloudSat and CALIPSO observations have been divided into over 8 million cloud scenes and collocated with ECMWF wind analyses to identify an empirical relationship between cloud overlap and wind shear for use in atmospheric models. For vertically continuous cloudy layers, cloud decorrelates from maximum toward random overlap as the layer separation distance increases, and the authors demonstrate a systematic impact of wind shear on the resulting decorrelation length scale. As expected, cloud decorrelates over smaller distances as wind shear increases. A simple, empirical linear fit parameterization is suggested that is straightforward to add to existing radiation schemes, although it is shown that the parameters are quite sensitive to the processing details of the cloud mask data and also to the fitting method used. The wind shear–overlap dependency is implemented in the radiation scheme of the ECMWF Integrated Forecast System. It has a similar-magnitude impact on the radiative budget as that of switching from a fixed decorrelation length scale to the latitude-dependent length scale presently used in the operational model, altering the zonal-mean, top-of-atmosphere, equator-to-midlatitude gradient of shortwave radiation by approximately 2 W m−2.

Corresponding author address: Francesca Di Giuseppe, ECMWF, Shinfield Park, RG29AX Reading, United Kingdom. E-mail: DiGiuseppe@ecmwf.int

Abstract

Six months of CloudSat and CALIPSO observations have been divided into over 8 million cloud scenes and collocated with ECMWF wind analyses to identify an empirical relationship between cloud overlap and wind shear for use in atmospheric models. For vertically continuous cloudy layers, cloud decorrelates from maximum toward random overlap as the layer separation distance increases, and the authors demonstrate a systematic impact of wind shear on the resulting decorrelation length scale. As expected, cloud decorrelates over smaller distances as wind shear increases. A simple, empirical linear fit parameterization is suggested that is straightforward to add to existing radiation schemes, although it is shown that the parameters are quite sensitive to the processing details of the cloud mask data and also to the fitting method used. The wind shear–overlap dependency is implemented in the radiation scheme of the ECMWF Integrated Forecast System. It has a similar-magnitude impact on the radiative budget as that of switching from a fixed decorrelation length scale to the latitude-dependent length scale presently used in the operational model, altering the zonal-mean, top-of-atmosphere, equator-to-midlatitude gradient of shortwave radiation by approximately 2 W m−2.

Corresponding author address: Francesca Di Giuseppe, ECMWF, Shinfield Park, RG29AX Reading, United Kingdom. E-mail: DiGiuseppe@ecmwf.int
Save