• Astin, I., and L. Di Girolamo, 2006: The relationship between α and the cross-correlation of cloud fraction. Quart. J. Roy. Meteor. Soc., 132, 24752478, doi:10.1256/qj.05.209.

    • Search Google Scholar
    • Export Citation
  • Astin, I., and L. Di Girolamo, 2014: Technical note: The horizontal scale-dependence of the cloud overlap parameter alpha. Atmos. Chem. Phys. Discuss., 14, 98019813, doi:10.5194/acpd-14-9801-2014.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 2008: Overlap of fractional cloud for radiation calculations in GCMs: A global analysis using CloudSat and CALIPSO data. J. Geophys. Res., 113, D00A01, doi:10.1029/2007JD009677.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., G. L. Stephens, and Q. Fu, 1999: The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteor. Soc., 125, 21272152, doi:10.1002/qj.49712555810.

    • Search Google Scholar
    • Export Citation
  • Chen, T., Y. Zhang, and W. B. Rossow, 2000: Sensitivity of atmospheric radiative heating rate profiles to variations of cloud layer overlap. J. Climate, 13, 29412959, doi:10.1175/1520-0442(2000)013<2941:SOARHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • CSU, 2013: GEOPROF. CloudSat Data Processing Center, Colorado State University, accessed February 2013. [Available online at http://cswww.cira.colostate.edu/data_dist/OrderData.php.]

  • CSU, 2014: GEOPROF-LIDAR. CloudSat Data Processing Center, Colorado State University, accessed December 2014. [Available online at http://cswww.cira.colostate.edu/data_dist/OrderData.php.]

  • CSU, 2015: 2C-RAIN-PROFILE_GRANULE. CloudSat Data Processing Center, Colorado State University, accessed February 2015. [Available online at http://cswww.cira.colostate.edu/data_dist/OrderData.php.]

  • Di Giuseppe, F., 2005: Sensitivity of one-dimensional radiative biases to vertical cloud structure assumptions: Validation with aircraft data. Quart. J. Roy. Meteor. Soc., 131, 16551676, doi:10.1256/qj.03.129.

    • Search Google Scholar
    • Export Citation
  • Di Giuseppe, F., and A. M. Tompkins, 2003: Effect of spatial organization on solar radiative transfer in three-dimensional idealized stratocumulus cloud fields. J. Atmos. Sci., 60, 17741794, doi:10.1175/1520-0469(2003)060<1774:EOSOOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Di Giuseppe, F., and A. M. Tompkins, 2015: Generalizing cloud overlap treatment to include the effect of wind shear. J. Atmos. Sci., doi:10.1175/JAS-D-14-0277.1, 72, 2865–2876.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., and W. J. Wiscombe, 2004: An algorithm for generating stochastic cloud fields from radar profile statistics. Atmos. Res., 72, 263289, doi:10.1016/j.atmosres.2004.03.016.

    • Search Google Scholar
    • Export Citation
  • Geleyn, J. F., and A. Hollingsworth, 1979: An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Contrib. Atmos. Phys., 52, 116.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. J. Illingworth, 2000: Deriving cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc., 126, 29032909, doi:10.1002/qj.49712656914.

    • Search Google Scholar
    • Export Citation
  • Kato, S., S. Sun-Mack, W. F. Miller, F. G. Rose, Y. Chen, P. Minnis, and B. A. Wielicki, 2010: Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res., 115, D00H28, doi:10.1029/2009JD012277.

    • Search Google Scholar
    • Export Citation
  • Kiemle, C., G. Ehret, S. Kawa, and E. Browell, 2015: The global distribution of cloud gaps in CALIPSO data. J. Quant. Spectrosc. Radiat. Transfer, 153, 95101, doi:10.1016/j.jqsrt.2014.12.001.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., 2007: Level 2 GEOPROF product process description and interface control document algorithm version 5.3. CloudSat Tech. Rep., 44 pp. [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-GEOPROF_PDICD.P_R04.20070628.pdf.]

  • Mace, G. G., and S. Benson-Troth, 2002: Cloud-layer overlap characteristics derived from long-term cloud radar data. J. Climate, 15, 25052515, doi:10.1175/1520-0442(2002)015<2505:CLOCDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using CloudSat—An earth-orbiting 94-ghz cloud radar. J. Atmos. Oceanic Technol., 25, 519533, doi:10.1175/2007JTECHA1006.1.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., and Y. Fouquart, 1986: The overlapping of cloud layers in shortwave radiation parameterizations. J. Atmos. Sci., 43, 321328, doi:10.1175/1520-0469(1986)043<0321:TOOCLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., and C. Jakob, 2000: The response of the ECMWF model to changes in the cloud overlap assumption. Mon. Wea. Rev., 128, 17071732, doi:10.1175/1520-0493(2000)128<1707:TROTEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. Del Genio, G. G. Mace, S. Benson, E. E. Clothiaux, and P. Kollias, 2008: Impact of dynamics and atmospheric state on cloud vertical overlap. J. Climate, 21, 17581770, doi:10.1175/2007JCLI1828.1.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and P. Norris, 2011: An analysis of cloud overlap at a midlatitude atmospheric observation facility. Atmos. Chem. Phys., 11, 55575567, doi:10.5194/acp-11-5557-2011.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., D. Lee, Y. Sud, and M. Suarez, 2012: Radiative impacts of cloud heterogeneity and overlap in an atmospheric general circulation model. Atmos. Chem. Phys., 12, 90979111, doi:10.5194/acp-12-9097-2012.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., C. Hannay, S. A. Klein, K.-M. Xu, and R. Hemler, 2005: Overlap assumptions for assumed probability distribution function cloud schemes in large-scale models. J. Geophys. Res.,110, D15S09, doi:10.1029/2004JD005100.

  • Schmidt, K. S., V. Venema, F. Di Giuseppe, R. Scheirer, M. Wendisch, and P. Pilewskie, 2007: Reproducing cloud microphysical and irradiance measurements using three 3D cloud generators. Quart. J. Roy. Meteor. Soc., 133, 765780, doi:10.1002/qj.53.

    • Search Google Scholar
    • Export Citation
  • Shonk, J. K., R. J. Hogan, J. M. Edwards, and G. G. Mace, 2010: Effect of improving representation of horizontal and vertical cloud structure on the Earth’s global radiation budget. Part I: Review and parametrization. Quart. J. Roy. Meteor. Soc., 136, 11911204, doi:10.1002/qj.647.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and A. Slingo, 1991: The response of a general-circulation model to cloud longwave radiative forcing. II: Further studies. Quart. J. Roy. Meteor. Soc., 117, 333364, doi:10.1002/qj.49711749805.

    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., D. J. Parker, J. Delanoë, N. S. Dixon, R. J. Hogan, P. Knippertz, R. I. Maidment, and J. H. Marsham, 2011: The vertical cloud structure of the West African monsoon: A 4 year climatology using CloudSat and CALIPSO. J. Geophys. Res.,116, D22205, doi:10.1029/2011JD016029.

  • Tompkins, A. M., 2003: Impact of temperature and total water variability on cloud cover assessed using aircraft data. Quart. J. Roy. Meteor. Soc., 129, 21512170, doi:10.1256/qj.02.190.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and F. Di Giuseppe, 2007: Generalizing cloud overlap treatment to include solar zenith angle effects on cloud geometry. J. Atmos. Sci., 64, 21162125, doi:10.1175/JAS3925.1.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and A. A. Adebiyi, 2012: Using CloudSat cloud retrievals to differentiate satellite-derived rainfall products over West Africa. J. Hydrometeor., 13, 18101816, doi:10.1175/JHM-D-12-039.1.

    • Search Google Scholar
    • Export Citation
  • Weger, R. C., J. Lee, T. Zhu, and R. M. Welch, 1992: Clustering, randomness and regularity in cloud fields: 1. Theoretical considerations. J. Geophys. Res., 97, 20 51920 536, doi:10.1029/92JD02038.

    • Search Google Scholar
    • Export Citation
  • Willén, U., S. Crewell, H. K. Baltink, and O. Sievers, 2005: Assessing model predicted vertical cloud structure and cloud overlap with radar and lidar ceilometer observations for the Baltex Bridge Campaign of CLIWA-NET. Atmos. Res., 75, 227255, doi:10.1016/j.atmosres.2004.12.008.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2011: The distribution of cloud horizontal sizes. J. Climate, 24, 48004816, doi:10.1175/2011JCLI4056.1.

  • Wu, X., and X.-Z. Liang, 2005: Radiative effects of cloud horizontal inhomogeneity and vertical overlap identified from a monthlong cloud-resolving model simulation. J. Atmos. Sci., 62, 41054112, doi:10.1175/JAS3565.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., T. Luo, D. Liu, and Z. Wang, 2014: Spatial scales of altocumulus clouds observed with collocated CALIPSO and CloudSat measurements. Atmos. Res., 149, 5869, doi:10.1016/j.atmosres.2014.05.023.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., X.-Z. Liang, J. Li, and Q. Zeng, 2013: Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects. J. Geophys. Res. Atmos., 118, 77337749, doi:10.1002/jgrd.50604.

    • Search Google Scholar
    • Export Citation
  • Zhu, T., J. Lee, R. C. Weger, and R. M. Welch, 1992: Clustering, randomness and regularity in cloud fields: 2. Cumulus cloud fields. J. Geophys. Res., 97, 20 53720 558, doi:10.1029/92JD02022.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 576 271 7
PDF Downloads 417 210 1

An Interpretation of Cloud Overlap Statistics

View More View Less
  • 1 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
  • | 2 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Restricted access

Abstract

Observational studies have shown that the vertical overlap of cloudy layers separated by clear sky can exceed that of the random overlap assumption, suggesting a tendency toward minimum overlap. In addition, the rate of decorrelation of vertically continuous clouds with increasing layer separation is sensitive to the horizontal scale of the cloud scenes used. The authors give a heuristic argument that these phenomena result from data truncation, where overcast or single cloud layers are removed from the analysis. This occurs more frequently as the cloud sampling scale falls progressively below the typical cloud system scale. The postulate is supported by sampling artificial cyclic and subsequently more realistic fractal cloud scenes at various length scales. The fractal clouds indicate that the degree of minimal overlap diagnosed in previous studies for discontinuous clouds could result from sampling randomly overlapped clouds at spatial scales that are 30%–80% of the cloud system scale. Removing scenes with cloud cover exceeding 50% from the analysis reduces the impact of data truncation, with discontinuous clouds not minimally overlapped and the decorrelation of continuous clouds less sensitive to the sampling scale. Using CloudSatCALIPSO data, a decorrelation length scale of approximately 4.0 km is found. In light of these results, the previously documented dependence of overlap decorrelation length scale on latitude is not entirely a physical phenomenon but can be reinterpreted as resulting from sampling cloud systems that increase significantly in size from the tropics to midlatitudes using a fixed sampling scale.

Corresponding author address: Adrian M. Tompkins, Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy. E-mail: tompkins@ictp.it

Abstract

Observational studies have shown that the vertical overlap of cloudy layers separated by clear sky can exceed that of the random overlap assumption, suggesting a tendency toward minimum overlap. In addition, the rate of decorrelation of vertically continuous clouds with increasing layer separation is sensitive to the horizontal scale of the cloud scenes used. The authors give a heuristic argument that these phenomena result from data truncation, where overcast or single cloud layers are removed from the analysis. This occurs more frequently as the cloud sampling scale falls progressively below the typical cloud system scale. The postulate is supported by sampling artificial cyclic and subsequently more realistic fractal cloud scenes at various length scales. The fractal clouds indicate that the degree of minimal overlap diagnosed in previous studies for discontinuous clouds could result from sampling randomly overlapped clouds at spatial scales that are 30%–80% of the cloud system scale. Removing scenes with cloud cover exceeding 50% from the analysis reduces the impact of data truncation, with discontinuous clouds not minimally overlapped and the decorrelation of continuous clouds less sensitive to the sampling scale. Using CloudSatCALIPSO data, a decorrelation length scale of approximately 4.0 km is found. In light of these results, the previously documented dependence of overlap decorrelation length scale on latitude is not entirely a physical phenomenon but can be reinterpreted as resulting from sampling cloud systems that increase significantly in size from the tropics to midlatitudes using a fixed sampling scale.

Corresponding author address: Adrian M. Tompkins, Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy. E-mail: tompkins@ictp.it
Save