• Avramov, A., and J. Harrington, 2010: The influence of parameterized ice habit on simulated mixed phase Arctic clouds. J. Geophys. Res., 115, D03205, doi:10.1029/2009JD012108.

    • Search Google Scholar
    • Export Citation
  • Bailey, M., and J. Hallett, 2004: Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61, 514544, doi:10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bailey, M., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 4569, doi:10.1016/j.atmosres.2012.04.010.

    • Search Google Scholar
    • Export Citation
  • Brown, P., G. Byrne, and A. Hindmarsh, 1989: VODE: A variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput., 10, 10381051, doi:10.1137/0910062.

    • Search Google Scholar
    • Export Citation
  • Burton, W. K., N. Cabrera, and F. C. Frank, 1951: The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. Roy. Soc. London, A243, 299358, doi:10.1098/rsta.1951.0006.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061221, doi:10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., 2004: Evidence of high ice supersaturation in cirrus clouds using ARM Raman lidar measurements. Geophys. Res. Lett., 31, L11106, doi:10.1029/2004GL019705.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds. J. Atmos. Sci., 51, 7790, doi:10.1175/1520-0469(1994)051<0077:PAIOII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. C. Rogers, and S. M. Kreidenweis, 1997: The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components. J. Geophys. Res., 102, 19 57519 584, doi:10.1029/97JD01138.

    • Search Google Scholar
    • Export Citation
  • Ervens, B., G. Feingold, K. Sulia, and J. Y. Harrington, 2011: The impact of microphysical parameters, ice nucleation mode, and habit growth on the ice/liquid partitioning in mixed-phase Arctic clouds. J. Geophys. Res., 116, D17205, doi:10.1029/2011JD015729.

    • Search Google Scholar
    • Export Citation
  • Ewing, G. E., 2004: Thin film water. J. Phys. Chem., B108, 15 95315 961, doi:10.1021/jp040378+.

  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, doi:10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, R. S., and Coauthors, 2004: Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds. Science, 303, 516520, doi:10.1126/science.1091255.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and D. E. Kinnison, 2007: The global impact of supersaturation in a coupled chemistry-climate model. Atmos. Chem. Phys.,7, 1629–1643, doi:10.5194/acp-7-1629-2007.

  • Gierens, K., 2003: On the transition between heterogeneous and homogeneous freezing. Atmos. Chem. Phys., 3, 437446, doi:10.5194/acp-3-437-2003.

    • Search Google Scholar
    • Export Citation
  • Gierens, K., M. Monier, and J.-F. Gayet, 2003: The deposition coefficient and its role for cirrus. J. Geophys. Res., 108, 4069, doi:10.1029/2001JD001558.

    • Search Google Scholar
    • Export Citation
  • Gonda, T., 1980: The influence of the diffusion of vapor and heat on the morphology of ice crystals grown from the vapor. J. Cryst. Growth, 49, 173181, doi:10.1016/0022-0248(80)90079-2.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., D. Lamb, and R. Carver, 2009: Parameterization of surface kinetic effects for bulk microphysical models: Influences on simulated cirrus dynamics and structure. J. Geophys. Res.,114, D06212, doi:10.1029/2008JD011050.

  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013a: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, doi:10.1175/JAS-D-12-040.1.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013b: A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. J. Atmos. Sci., 70, 365376, doi:10.1175/JAS-D-12-0152.1.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 22102237, doi:10.1175/JAS3963.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and R. M. Sabin, 1989: Cirrus crystal nucleation by homogeneous freezing of solution droplets. J. Atmos. Sci., 46, 22522264, doi:10.1175/1520-0469(1989)046<2252:CCNBHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, E., O. Toon, D. Westphal, S. Kinne, and A. Heymsfield, 1994: Microphysical modeling of cirrus: 1. Comparison with 1986 FIRE IFO measurements. J. Geophys. Res., 99, 10 42110 442, doi:10.1029/93JD02334.

    • Search Google Scholar
    • Export Citation
  • Jensen, E., L. Pfister, T. Bui, P. Lawson, and D. Baumgardner, 2010: Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus. Atmos. Chem. Phys., 10, 13691384, doi:10.5194/acp-10-1369-2010.

    • Search Google Scholar
    • Export Citation
  • Kay, J., and R. Wood, 2008: Timescale analysis of aerosol sensitivity during homogeneous freezing and implications for upper tropospheric water vapor budgets. Geophys. Res. Lett.,35, L10809, doi:10.1029/2007GL032628.

  • Koop, T., B. Luo, A. Tslas, and T. Peter, 2000: Water activity as the determinant for homogeneous ice freezing in aqueous solutions. Nature, 406, 611614, doi:10.1038/35020537.

    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 35053522, doi:10.5194/acp-9-3505-2009.

    • Search Google Scholar
    • Export Citation
  • Kuroda, T., and R. Lacmann, 1982: Growth kinetics of ice from the vapour phase and its growth forms. J. Cryst. Growth, 56, 189205, doi:10.1016/0022-0248(82)90028-8.

    • Search Google Scholar
    • Export Citation
  • Lamb, D., and W. Scott, 1974: The mechanism of ice crystal growth and habit formation. J. Atmos. Sci., 31, 570580, doi:10.1175/1520-0469(1974)031<0570:TMOICG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawson, R., B. Pilson, B. Baker, Q. Mo, E. Jensen, L. Pfister, and P. Bui, 2008: Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layer. Atmos. Chem. Phys., 8, 16091620, doi:10.5194/acp-8-1609-2008.

    • Search Google Scholar
    • Export Citation
  • Libbrecht, K. G., 2003a: Explaining the formation of thin ice crystal plates with structure-dependent attachment kinetics. J. Cryst. Growth, 258, 168175, doi:10.1016/S0022-0248(03)01496-9.

    • Search Google Scholar
    • Export Citation
  • Libbrecht, K. G., 2003b: Growth rates of the principal facets of ice between −10°C and −40°C. J. Cryst. Growth, 247, 530540, doi:10.1016/S0022-0248(02)01996-6.

    • Search Google Scholar
    • Export Citation
  • Libbrecht, K. G., 2005: The physics of snow crystals. Rep. Prog. Phys., 68, 855895, doi:10.1088/0034-4885/68/4/R03.

  • Lin, R.-F., D. O’C. Starr, P. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Karcher, and X. Liu, 2002: Cirrus parcel model comparison project. Phase I: The critical components to simulation cirrus initiation explicitly. J. Atmos. Sci., 59, 23052329, doi:10.1175/1520-0469(2002)059<2305:CPMCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., P. Spichtinger, S. Jess, T. Peter, and H. Smit, 2008: Cirrus cloud formation and ice supersaturated regions in a global climate model. Environ. Res. Lett.,3, 045022, doi:10.1088/1748-9326/3/4/045022.

  • Magee, N., A. Moyle, and D. Lamb, 2006: Experimental determination of the deposition coefficient of small cirrus-like crystals near −50°C. Geophys. Res. Lett.,33, L17813, doi:10.1029/2006GL026665.

  • Magee, N., A. Miller, M. Amaral, and A. Cumiskey, 2014: Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions. Atmos. Chem. Phys., 14, 12 35712 371, doi:10.5194/acp-14-12357-2014.

    • Search Google Scholar
    • Export Citation
  • Markov, I., 2003: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy. World Scientific, 564 pp.

  • Ming, N.-B., K. Tsukamoto, I. Sunagawa, and A. Chernov, 1988: Stacking faults as self-perpetuating step sources. J. Cryst. Growth, 91, 1119, doi:10.1016/0022-0248(88)90360-0.

    • Search Google Scholar
    • Export Citation
  • Mordy, W., 1959: Computations of the growth by condensation of a population of cloud droplets. Tellus, 11A, 1644, doi:10.1111/j.2153-3490.1959.tb00003.x.

    • Search Google Scholar
    • Export Citation
  • Murray, B. J., and Coauthors, 2010: Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci., 3, 233237, doi:10.1038/ngeo817.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., and M. Baker, 1996: New theoretical framework for studies of vapor growth and sublimation of small ice crystals in the atmosphere. J. Geophys. Res., 101, 70337047, doi:10.1029/95JD03162.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., and C. Knight, 1998: Snow crystal habit changes explained by layer nucleation. J. Atmos. Sci., 55, 14521465, doi:10.1175/1520-0469(1998)055<1452:SCHCEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peter, T., C. Marcolli, P. Spichtinger, T. Corti, M. B. Baker, and T. Koop, 2006: When dry air is too humid. Science, 314, 13991402, doi:10.1126/science.1135199.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation.Kluwer Academic Publishers, 954 pp.

  • Shaw, R. A., and D. Lamb, 1999: Experimental determination of the thermal accommodation and condensation coefficients of water. J. Chem. Phys., 111, 10 65910 663, doi:10.1063/1.480419.

    • Search Google Scholar
    • Export Citation
  • Sheridan, L. M., J. Y. Harrington, D. Lamb, and K. Sulia, 2009: Influence of ice crystal aspect ratio on the evolution of ice size spectra during vapor depositional growth. J. Atmos. Sci., 66, 37323743, doi:10.1175/2009JAS3113.1.

    • Search Google Scholar
    • Export Citation
  • Skrotzki, J., and Coauthors, 2013: The accommodation coefficient of water molecules on ice—Cirrus cloud studies at the AIDA simulation chamber. Atmos. Chem. Phys., 13, 44514466, doi:10.5194/acp-13-4451-2013.

    • Search Google Scholar
    • Export Citation
  • Spichtinger, P., and K. M. Gierens, 2009: Modelling of cirrus clouds—Part 1a: Model description and validation. Atmos. Chem. Phys., 9, 685706, doi:10.5194/acp-9-685-2009.

    • Search Google Scholar
    • Export Citation
  • Spichtinger, P., K. Gierens, H. Smit, J. Ovarlez, and J.-F. Gayet, 2004: On the distribution of relative humidity in cirrus clouds. Atmos. Chem. Phys., 4, 639647, doi:10.5194/acp-4-639-2004.

    • Search Google Scholar
    • Export Citation
  • Sulia, K., and J. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res., 116,D21309, doi:10.1029/2011JD016298.

    • Search Google Scholar
    • Export Citation
  • Wood, S., M. Baker, and D. Calhoun, 2001: New model for the vapor growth of hexagonal ice crystals in the atmosphere. J. Geophys. Res., 106, 48454870, doi:10.1029/2000JD900338.

    • Search Google Scholar
    • Export Citation
  • Xue, H., A. M. Moyle, N. Magee, J. Y. Harrington, and D. Lamb, 2005: Experimental studies of droplet evaporation kinetics: Validation of models for binary and ternary aqueous solutions. J. Atmos. Sci., 62, 43104326, doi:10.1175/JAS3623.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Y. Harrington, 2014: Including surface kinetic effects in simple models of ice vapor diffusion. J. Atmos. Sci., 71, 372390, doi:10.1175/JAS-D-13-0103.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., X. Liu, M. Wang, J. M. Comstock, D. L. Mitchell, S. Mishra, and G. G. Mace, 2013: Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign. Atmos. Chem. Phys., 13, 49634982, doi:10.5194/acp-13-4963-2013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 107 38 3
PDF Downloads 65 20 1

The Effects of Surface Kinetics on Crystal Growth and Homogeneous Freezing in Parcel Simulations of Cirrus

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
Restricted access

Abstract

The uptake of water vapor excess by ice crystals is a key process regulating the supersaturation in cold clouds. Both the ice crystal number concentration and depositional growth rate control the vapor uptake rate and are sensitive to the deposition coefficient . The deposition coefficient depends on temperature and supersaturation; however, cloud models either ignore or assume a constant .

In this study, the effects of on crystal growth and homogeneous freezing of haze solution drops in simulated cirrus are examined. A Lagrangian parcel model is used with a new ice growth model that predicts the deposition coefficients along two crystal growth axes. Parcel model results indicate that predicting can be critical for predicting ice nucleation and supersaturation at different stages of cloud development. At cloud base, model results show that surface kinetics constrain the homogeneous freezing rate primarily through the growth impact of small particle sizes in comparison to the mean free path. The deposition coefficient has little effect on homogeneous freezing rates, because the high cloud-base supersaturation produces near unity. Above the cloud-base nucleation zone, decreasing supersaturation causes to decrease to values as low as 0.001. These low values of lead to higher steady-state supersaturation. Also, the low values of produce substantial impacts on particle shape evolution and particle size, both of which are dependent on updraft strength.

Corresponding author address: Chengzhu Zhang, Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808. E-mail: chengzhu.zhang@gmail.com

Abstract

The uptake of water vapor excess by ice crystals is a key process regulating the supersaturation in cold clouds. Both the ice crystal number concentration and depositional growth rate control the vapor uptake rate and are sensitive to the deposition coefficient . The deposition coefficient depends on temperature and supersaturation; however, cloud models either ignore or assume a constant .

In this study, the effects of on crystal growth and homogeneous freezing of haze solution drops in simulated cirrus are examined. A Lagrangian parcel model is used with a new ice growth model that predicts the deposition coefficients along two crystal growth axes. Parcel model results indicate that predicting can be critical for predicting ice nucleation and supersaturation at different stages of cloud development. At cloud base, model results show that surface kinetics constrain the homogeneous freezing rate primarily through the growth impact of small particle sizes in comparison to the mean free path. The deposition coefficient has little effect on homogeneous freezing rates, because the high cloud-base supersaturation produces near unity. Above the cloud-base nucleation zone, decreasing supersaturation causes to decrease to values as low as 0.001. These low values of lead to higher steady-state supersaturation. Also, the low values of produce substantial impacts on particle shape evolution and particle size, both of which are dependent on updraft strength.

Corresponding author address: Chengzhu Zhang, Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808. E-mail: chengzhu.zhang@gmail.com
Save