• Blanchard, D. O., 1998: Assessing the vertical distribution of convective available potential energy. Wea. Forecasting, 13, 870877, doi:10.1175/1520-0434(1998)013<0870:ATVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, doi:10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2005: Spurious convective organization in simulated squall lines owing to moist absolutely unstable layers. Mon. Wea. Rev., 133, 19781997, doi:10.1175/MWR2952.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and M. J. Fritsch, 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 12071230, doi:10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., D. Ahijevych, C. Davis, S. Trier, and M. Weisman, 2005: Observations of cold pool properties in mesoscale convective systems during BAMEX. 11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., JP5J.12. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96718.htm.]

  • Bryan, G. H., J. C. Knievel, and M. D. Parker, 2006: A multimodel assessment of RKW theory’s relevance to squall-line characteristics. Mon. Wea. Rev., 134, 27722792, doi:10.1175/MWR3226.1.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., S. G. Benjamin, G. S. Forbes, and Y. F. Li, 1983: Elevated mixed layers in the regional severe storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 14531474, doi:10.1175/1520-0493(1983)111<1453:EMLITR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., M. C. Coniglio, S. F. Corfidi, and S. J. Corfidi, 2007: Discrimination of mesoscale convective system environments using sounding observations. Wea. Forecasting, 22, 10451062, doi:10.1175/WAF1040.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, doi:10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, doi:10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fawbush, E. J., and R. C. Miller, 1954: A basis for forecasting peak wind gusts in non-frontal thunderstorms. Bull. Amer. Meteor. Soc., 35, 1419.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and Y. Ogura, 1989: Effect of vertical wind shear on numerically simulated multicell storm structure. J. Atmos. Sci., 46, 31443176, doi:10.1175/1520-0469(1989)046<3144:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and L. J. Wicker, 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943958, doi:10.1175/1520-0493(1998)126<0943:TIOMDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., M. I. Biggerstaff, S. A. Rutledge, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619, doi:10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, doi:10.1175/2009MWR3018.1.

    • Search Google Scholar
    • Export Citation
  • James, R. P., P. M. Markowski, and J. M. Fritsch, 2006: Bow echo sensitivity to ambient moisture and cold pool strength. Mon. Wea. Rev., 134, 950964, doi:10.1175/MWR3109.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521544, doi:10.1175/1520-0469(1989)046<0521:ANIOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, doi:10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

  • McCaul, E. W., Jr., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664687, doi:10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., R. A. Houze, and S. S. Chen, 2002: Layer inflow into precipitating convection over the western tropical Pacific. Quart. J. Roy. Meteor. Soc., 128, 19972030, doi:10.1256/003590002320603502.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2010: The multiscale organization of moist convection and the intersection of weather and climate. Climate Dynamics: Why Does Climate Vary? Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 3–26, doi:10.1029/2008GM000838.

  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16781693, doi:10.1175/JAS3447.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, doi:10.1175/JAS-D-14-0066.1.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 29242951, doi:10.1175/1520-0469(1996)053<2924:TIOCGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341, doi:10.1175/2007JAS2507.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 27082718, doi:10.1175/1520-0469(1986)043<2708:ASMMFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., P. N. Schumacher, and C. A. Doswell III, 2000: The intricacies of instabilities. Mon. Wea. Rev., 128, 41434148, doi:10.1175/1520-0493(2000)129<4143:TIOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., S. C. van den Heever, and S. M. Saleeby, 2013: Mineral dust indirect effects and cloud radiative feedbacks of a simulated idealized nocturnal squall line. Atmos. Chem. Phys., 13, 44674485, doi:10.5194/acp-13-4467-2013.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., M. C. Coniglio, R. P. Davies-Jones, and J. S. Evans, 2005: Comments on “‘A theory for strong long-lived squall lines’ revisited”. J. Atmos. Sci., 62, 29892996, doi:10.1175/JAS3514.1.

    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2007: Environmental stability control of the intensity of squall lines under low-level shear conditions. J. Geophys. Res., 112, D24110, doi:10.1029/2007JD008793.

    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2010: Dependence of the precipitation intensity in mesoscale convective systems to temperature lapse rate. Atmos. Res., 96, 273285, doi:10.1016/j.atmosres.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847, doi:10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645670, doi:10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, doi:10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, doi:10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013, doi:10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyss, J., and K. A. Emanuel, 1988: The pre-storm environment of midlatitude prefrontal squall lines. Mon. Wea. Rev., 116, 790794, doi:10.1175/1520-0493(1988)116<0790:TPSEOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and D. A. Randall, 2012: Cooling of entrained parcels in a large-eddy simulation. J. Atmos. Sci., 69, 11181136, doi:10.1175/JAS-D-11-080.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, doi:10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 89 5
PDF Downloads 121 69 6

Thermodynamic Constraints on the Morphology of Simulated Midlatitude Squall Lines

View More View Less
  • 1 School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
Restricted access

Abstract

This study examines how environmental thermodynamics constrain the morphology of simulated idealized midlatitude squall lines (SLs). The thermodynamic soundings used for simulating various SLs are specified primarily by prescribed vertical profiles of the convective available potential energy (CAPE) and the level of free convection. This framework, which contemplates the latent instability properties of both low- and midtropospheric air, is considered to be convenient for investigating layer-lifting convective phenomena.

Results show that frequently used CAPE indices are unsuitable for diagnosing SL characteristics, while integrated CAPE (ICAPE) discriminates the amplitude of the storm-induced heating for a given value of environmental shear. The skill of ICAPE follows from its relation to the buoyancy attained by low- and midtropospheric parcels as they ascend over the cold pool under layer-lifting convection. Environmental kinematics also affect the storm-induced heating, with stronger low-level shear leading to a greater proportion of inflowing latent unstable air among total storm-relative inflow, thus producing higher temperatures aloft. The precipitable water accounts for much of the precipitation-rate variation for a given value of shear. The precipitation efficiency is lower in environments with weaker shear and dryer midtropospheric conditions.

Cold pool temperatures are slightly affected by environmental variations beneath the layer of minimum moist static energy, with drier midtropospheric conditions and weaker shear leading to warmer cold pools. SLs with a small vertical gradient of cold pool buoyancy propagate less rapidly and produce small surface wind speeds. Cold pool properties could be affected by a descending branch of the front-to-rear flow, which crosses over with the rear inflow jet.

Corresponding author address: Diego Alfaro, School of Marine and Atmospheric Sciences, Stony Brook University, Endeavour Hall, Stony Brook, NY 11794-5000. E-mail: diego.alfaro@stonybrook.edu

Abstract

This study examines how environmental thermodynamics constrain the morphology of simulated idealized midlatitude squall lines (SLs). The thermodynamic soundings used for simulating various SLs are specified primarily by prescribed vertical profiles of the convective available potential energy (CAPE) and the level of free convection. This framework, which contemplates the latent instability properties of both low- and midtropospheric air, is considered to be convenient for investigating layer-lifting convective phenomena.

Results show that frequently used CAPE indices are unsuitable for diagnosing SL characteristics, while integrated CAPE (ICAPE) discriminates the amplitude of the storm-induced heating for a given value of environmental shear. The skill of ICAPE follows from its relation to the buoyancy attained by low- and midtropospheric parcels as they ascend over the cold pool under layer-lifting convection. Environmental kinematics also affect the storm-induced heating, with stronger low-level shear leading to a greater proportion of inflowing latent unstable air among total storm-relative inflow, thus producing higher temperatures aloft. The precipitable water accounts for much of the precipitation-rate variation for a given value of shear. The precipitation efficiency is lower in environments with weaker shear and dryer midtropospheric conditions.

Cold pool temperatures are slightly affected by environmental variations beneath the layer of minimum moist static energy, with drier midtropospheric conditions and weaker shear leading to warmer cold pools. SLs with a small vertical gradient of cold pool buoyancy propagate less rapidly and produce small surface wind speeds. Cold pool properties could be affected by a descending branch of the front-to-rear flow, which crosses over with the rear inflow jet.

Corresponding author address: Diego Alfaro, School of Marine and Atmospheric Sciences, Stony Brook University, Endeavour Hall, Stony Brook, NY 11794-5000. E-mail: diego.alfaro@stonybrook.edu
Save