• Abel, S. J., and B. J. Shipway, 2007: A comparison of cloud-resolving model simulations of trade wind cumulus with aircraft observations taken during RICO. Quart. J. Roy. Meteor. Soc., 133, 781794, doi:10.1002/qj.55.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aspliden, C. I., 1976: A classification of the structure of the tropical atmosphere and related energy fluxes. J. Appl. Meteor., 15, 692697, doi:10.1175/1520-0450(1976)015<0692:ACOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Austin, J., 1948: A note on cumulus growth in a nonsaturated environment. J. Meteor., 5, 103107, doi:10.1175/1520-0469(1948)005<0103:ANOCGI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1967: An Introduction to Fluid Mechanics. Cambridge University Press, 615 pp.

  • Betts, A., and W. Ridgway, 1989: Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46, 26212641, doi:10.1175/1520-0469(1989)046<2621:CEOTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., W. A. Cooper, and J. B. Jensen, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 39443964, doi:10.1175/1520-0469(1988)045<3944:ASOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., S. G. Lasher-Trapp, and W. A. Cooper, 2005: A study of thermals in cumulus clouds. Quart. J. Roy. Meteor. Soc., 131, 11711190, doi:10.1256/qj.03.180.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., J. H. Lowenstein, Y. Huang, Z. Cui, S. Davies, and K. S. Carslaw, 2013: The production of warm rain in shallow maritime cumulus clouds. Quart. J. Roy. Meteor. Soc., 139, 2031, doi:10.1002/qj.1972.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, Y., J. R. Snider, and P. Wechsler, 2013: Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution. Atmos. Meas. Tech., 6, 23492358, doi:10.5194/amt-6-2349-2013.

    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part I: General results. J. Atmos. Sci., 55, 34173432, doi:10.1175/1520-0469(1998)055<3417:EADINS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., R. T. Bruintjes, and G. K. Mather, 1997: Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteor., 36, 14491469, doi:10.1175/1520-0450(1997)036<1449:CPTHSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davison, J. L., R. M. Rauber, L. Di Girolamo, and M. A. LeMone, 2013a: A revised conceptual model of the tropical marine boundary layer. Part I: Statistical characterization of the variability inherent in the wintertime trade wind regime over the western tropical Atlantic. J. Atmos. Sci., 70, 30053024, doi:10.1175/JAS-D-12-0321.1.

    • Search Google Scholar
    • Export Citation
  • Davison, J. L., R. M. Rauber, L. Di Girolamo, and M. A. LeMone, 2013b: A revised conceptual model of the tropical marine boundary layer. Part II: Detecting relative humidity layers using Bragg scattering from S-band radar. J. Atmos. Sci., 70, 30253046, doi:10.1175/JAS-D-12-0322.1.

    • Search Google Scholar
    • Export Citation
  • Davison, J. L., R. M. Rauber, L. Di Girolamo, and M. A. LeMone, 2013c: A revised conceptual model of the tropical marine boundary layer. Part III: Bragg scattering layer statistical properties. J. Atmos. Sci., 70, 30473062, doi:10.1175/JAS-D-12-0323.1.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, doi:10.1002/qj.1959.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., P. G. Black, and W. M. Gray, 2002: Flight-level thermodynamic instrument wetting errors in hurricanes. Part I: Observations. Mon. Wea. Rev., 130, 825841, doi:10.1175/1520-0493(2002)130<0825:FLTIWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018, doi:10.1175/2007JAS2322.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and S. Lee, 2008: Giant sea-salt aerosols and warm rain formation in marine stratocumulus. J. Atmos. Sci., 65, 36783694, doi:10.1175/2008JAS2617.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., P. H. Austin, M. B. Baker, and A. M. Blyth, 1985: Turbulent mixing, spectral evolution and dynamics in a warm cumulus cloud. J. Atmos. Sci., 42, 173192, doi:10.1175/1520-0469(1985)042<0173:TMSEAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., 1982: The role of giant and ultragiant nuclei in warm rain initiation. J. Atmos. Sci., 39, 448460, doi:10.1175/1520-0469(1982)039<0448:TROGAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Kirshbaum, D. J., 2013: On thermally forced circulations over heated terrain. J. Atmos. Sci., 70, 16901709, doi:10.1175/JAS-D-12-0199.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and R. B. Smith, 2009: Orographic precipitation in the tropics: Large-eddy simulations and theory. J. Atmos. Sci., 66, 25592578, doi:10.1175/2009JAS2990.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and A. L. M. Grant, 2012: Invigoration of cumulus cloud fields by mesoscale ascent. Quart. J. Roy. Meteor. Soc., 138, 21362150, doi:10.1002/qj.1954.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., C.-W. Su, and P. A. McMurty, 1997: Modeling entrainment and finescale mixing in cumulus clouds. J. Atmos. Sci., 54, 26972712, doi:10.1175/1520-0469(1997)054<2697:MEAFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, doi:10.5194/amt-3-1683-2010.

    • Search Google Scholar
    • Export Citation
  • Manton, M. J., 1983: The physics of clouds in the atmosphere. Rep. Prog. Phys., 46, 13931444, doi:10.1088/0034-4885/46/12/001.

  • Minder, J. R., R. B. Smith, and A. D. Nugent, 2013: The dynamics of ascent-forced orographic convection in the tropics: Results from Dominica. J. Atmos. Sci., 70, 40674088, doi:10.1175/JAS-D-13-016.1.

    • Search Google Scholar
    • Export Citation
  • Morton, B. R., G. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, 234A, 123, doi:10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., A. P. Siebesma, and H. J. J. Jonker, 2002: A multiparcel model for shallow cumulus convection. J. Atmos. Sci., 59, 16551668, doi:10.1175/1520-0469(2002)059<1655:AMMFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nie, J., and Z. Kuang, 2012: Responses of shallow cumulus convection to large-scale temperature and moisture perturbations: A comparison of large-eddy simulations and a convective parameterization based on stochastically entraining parcels. J. Atmos. Sci., 69, 19361956, doi:10.1175/JAS-D-11-0279.1.

    • Search Google Scholar
    • Export Citation
  • Nugent, A. D., and R. B. Smith, 2014: Initiating moist convection in an inhomogeneous layer by uniform ascent. J. Atmos. Sci., 71, 45974610, doi:10.1175/JAS-D-14-0089.1.

    • Search Google Scholar
    • Export Citation
  • Nugent, A. D., R. B. Smith, and J. R. Minder, 2014: Wind speed control on tropical orographic convection. J. Atmos. Sci., 71, 26952712, doi:10.1175/JAS-D-13-0399.1.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., and B. Stevens, 2012: The influence of wind speed on shallow marine cumulus convection. J. Atmos. Sci., 69, 168184, doi:10.1175/JAS-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Nuijens, L., B. Stevens, and A. P. Siebesma, 2009: The environment of precipitating shallow cumulus convection. J. Atmos. Sci., 66, 19621979, doi:10.1175/2008JAS2841.1.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2007: Rain in Shallow Cumulus over the Ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, doi:10.1175/BAMS-88-12-1912.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Nature versus nurture in shallow convection. J. Atmos. Sci., 67, 16551666, doi:10.1175/2009JAS3307.1.

    • Search Google Scholar
    • Export Citation
  • Russotto, R. D., T. Storelvmo, and R. B. Smith, 2013: Modeling aerosol activation in a tropical, orographic, island setting: Sensitivity tests and comparison with observations. Atmos. Res., 134, 1223, doi:10.1016/j.atmosres.2013.07.017.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernandez-Deckers, and M. Colin, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, doi:10.1175/JAS-D-12-0220.1.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note. NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Smith, R. B., P. Schafer, D. J. Kirshbaum, and E. Regina, 2009: Orographic precipitation in the tropics: Experiments in Dominica. J. Atmos. Sci., 66, 16981716, doi:10.1175/2008JAS2920.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Coauthors, 2012: Orographic precipitation in the tropics: The Dominica experiment. Bull. Amer. Meteor. Soc., 93, 15671579, doi:10.1175/BAMS-D-11-00194.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and J.-L. Brenguier, 2009: Cloud-controlling factors. Clouds in the Perturbed Climate System, J. Heintzenberg and R. Charlson, Eds., MIT Press, 173–196.

  • Wang, Y., and B. Geerts, 2009: Estimating the evaporative cooling bias of an airborne reverse flow thermometer. J. Atmos. Oceanic Technol., 26, 321, doi:10.1175/2008JTECHA1127.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., P. Wechsler, W. Kuestner, J. French, A. Rodi, B. Glover, M. Burkhart, and D. Lukens, 2009: Wyoming Cloud Lidar: Instrument description and applications. Opt. Express, 17, 13 57613 587, doi:10.1364/OE.17.013576.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1970: On steady-state one-dimensional models of cumulus convection. J. Atmos. Sci., 27, 10351040, doi:10.1175/1520-0469(1970)027<1035:OSSODM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodcock, A. H., 1953: Salt nuclei in marine air as a function of altitude and wind force. J. Meteor., 10, 362371, doi:10.1175/1520-0469(1953)010<0366:SNIMAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodcock, A. H., 1960: The origin of trade-wind orographic shower rains. Tellus, 12, 315326, doi:10.1111/j.2153-3490.1960.tb01316.x.

  • Zehnder, J. A., J. Hu, and A. Radzan, 2009: Evolution of the vertical thermodynamic profile during the transition from shallow to deep convection during CuPIDO 2006. Mon. Wea. Rev., 137, 937953, doi:10.1175/2008MWR2829.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310, doi:10.1175/JAS3415.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 200 83 11
PDF Downloads 131 36 3

Processes Controlling Precipitation in Shallow, Orographic, Trade Wind Convection

View More View Less
  • 1 Department of Geology and Geophysics, Yale University, New Haven, Connecticut
Restricted access

Abstract

A sharp reduction in precipitation was observed on the island of Dominica in the Caribbean during a 2011 field campaign when the trade winds weakened and convection transitioned from mechanically to thermally driven. The authors propose four hypotheses for this reduction, which relate to (i) the triggering mechanism, (ii) dry-air entrainment, (iii) giant sea-salt aerosol, and (iv) small-island-derived aerosol. The plausibility of the first three hypotheses is the focus of this study.

Aircraft observations show the dynamics of the orographic cumulus clouds at flight level are surprisingly similar, irrespective of how they are triggered. However, the orographic cumulus clouds are consistently shallower when the trade winds are weak, which the authors attribute to a drier and shallower cloud layer compared to days with stronger trade winds. The strong negative influence of dry-air entrainment in a drier environment on cumulus depth and liquid water content is qualitatively demonstrated using an entraining plume model and the WRF Model. Although the models appear more sensitive than observations to entrainment and cloud size, the sensitivity tests have some resemblance to observations. The authors also find evidence of sea-salt aerosol entering the base of marine cumulus on strong wind days using an aircraft-mounted lidar and other instruments. Although each hypothesis is plausible, the complex interplay of these processes makes determining the controlling mechanisms difficult. Ultimately, the authors’ analysis rejects the hypothesis (i) triggering, while supporting (ii) entrainment and (iii) sea-salt aerosol.

Corresponding author address: Campbell D. Watson, Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, CT 06511. E-mail: campbell.watson@yale.edu

Current affiliation: IBM T. J. Watson Research Center, Yorktown Heights, New York.

Abstract

A sharp reduction in precipitation was observed on the island of Dominica in the Caribbean during a 2011 field campaign when the trade winds weakened and convection transitioned from mechanically to thermally driven. The authors propose four hypotheses for this reduction, which relate to (i) the triggering mechanism, (ii) dry-air entrainment, (iii) giant sea-salt aerosol, and (iv) small-island-derived aerosol. The plausibility of the first three hypotheses is the focus of this study.

Aircraft observations show the dynamics of the orographic cumulus clouds at flight level are surprisingly similar, irrespective of how they are triggered. However, the orographic cumulus clouds are consistently shallower when the trade winds are weak, which the authors attribute to a drier and shallower cloud layer compared to days with stronger trade winds. The strong negative influence of dry-air entrainment in a drier environment on cumulus depth and liquid water content is qualitatively demonstrated using an entraining plume model and the WRF Model. Although the models appear more sensitive than observations to entrainment and cloud size, the sensitivity tests have some resemblance to observations. The authors also find evidence of sea-salt aerosol entering the base of marine cumulus on strong wind days using an aircraft-mounted lidar and other instruments. Although each hypothesis is plausible, the complex interplay of these processes makes determining the controlling mechanisms difficult. Ultimately, the authors’ analysis rejects the hypothesis (i) triggering, while supporting (ii) entrainment and (iii) sea-salt aerosol.

Corresponding author address: Campbell D. Watson, Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, CT 06511. E-mail: campbell.watson@yale.edu

Current affiliation: IBM T. J. Watson Research Center, Yorktown Heights, New York.

Save