• Anthes, R. A., Y.-H. Kuo, and J. R. Gyakum, 1983: Numerical simulations of a case of explosive marine cyclogenesis. Mon. Wea. Rev., 111, 11741188, doi:10.1175/1520-0493(1983)111<1174:NSOACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arbogast, P., K. Maynard, and F. Crepin, 2008: Ertel potential vorticity inversion using a digital filter initialization method. Quart. J. Roy. Meteor. Soc., 134, 12871296, doi:10.1002/qj.283.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., S. Wang, and L. Polvani, 2013: Midlatitude storms in a moister world: Lessons from idealized baroclinic life cycle experiments. Climate Dyn., 41, 787802, doi:10.1007/s00382-012-1472-3.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrère, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., S. L. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 12701282, doi:10.1002/qj.2037.

    • Search Google Scholar
    • Export Citation
  • Chang, C. B., D. J. Perkey, and C. W. Kreitzberg, 1984: Latent heat induced energy transformations during cyclogenesis. Mon. Wea. Rev., 112, 357367, doi:10.1175/1520-0493(1984)112<0357:LHIETD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, doi:10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colella, P., and P. Woodward, 1984: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys., 54, 115173, doi:10.1016/0021-9991(84)90142-6.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., P. Bougeault, and J. L. Redelsperger, 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, doi:10.1002/qj.49712656202.

    • Search Google Scholar
    • Export Citation
  • Danard, M. B., 1964: On the influence of released latent heat on cyclone development. J. Appl. Meteor., 3, 2737, doi:10.1175/1520-0450(1964)003<0027:OTIORL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., and M. Didone, 2013: Diagnosis and dynamics of forecast error growth. Mon. Wea. Rev., 141, 24832501, doi:10.1175/MWR-D-12-00242.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., M. T. Stoelinga, and Y.-H. Kuo, 1993: The integrated effect of condensation in numerical simulations of extratropical cyclogenesis. Mon. Wea. Rev., 121, 23092330, doi:10.1175/1520-0493(1993)121<2309:TIEOCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Vries, H., J. Methven, T. H. A. Frame, and B. J. Hoskins, 2010: Baroclinic waves with parameterized effects of moisture interpreted using Rossby wave components. J. Atmos. Sci., 67, 27662784, doi:10.1175/2010JAS3410.1.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1989: Improving the anelastic approximation. J. Atmos. Sci., 46, 14531461, doi:10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, doi:10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., T. Brücher, V. Ermert, A. Krüger, and J. G. Pinto, 2009: The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci., 9, 405423, doi:10.5194/nhess-9-405-2009.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., S. Pohle, J. G. Pinto, and P. Knippertz, 2012: Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys. Res. Lett.,39, L07803, doi:10.1029/2012GL051025.

  • Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J. Comput. Phys., 17, 209228, doi:10.1016/0021-9991(75)90037-6.

    • Search Google Scholar
    • Export Citation
  • Gall, R., 1976: The effects of released latent heat in growing baroclinic waves. J. Atmos. Sci., 33, 16861701, doi:10.1175/1520-0469(1976)033<1686:TEORLH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gilet, J.-B., M. Plu, and G. Rivière, 2009: Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet. J. Atmos. Sci., 66, 30213041, doi:10.1175/2009JAS3086.1.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, doi:10.1002/qj.891.

    • Search Google Scholar
    • Export Citation
  • Grønås, S., 1995: The seclusion intensification of the New Year’s day storm 1992. Tellus, 47A, 733746, doi:10.1034/j.1600-0870.1995.00116.x.

    • Search Google Scholar
    • Export Citation
  • Guérin, R., G. Desroziers, and P. Arbogast, 2006: 4D-Var analysis of potential vorticity pseudo-observations. Quart. J. Roy. Meteor. Soc., 132, 12831298, doi:10.1256/qj.05.53.

    • Search Google Scholar
    • Export Citation
  • Hewson, T., L. Magnusson, O. Breivik, F. Prates, I. Tsonevsky, and H. J. W. de Vries, 2014: Windstorms in northwest Europe in late 2013. ECMWF Newsletter, No. 139, ECMWF, Reading, United Kingdom, 22–28.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. International Geophysics Series, Vol. 88, Academic Press, 535 pp.

  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29, 1137, doi:10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407418, doi:10.1002/qj.934.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., and R. J. Reed, 1988: Numerical simulation of an explosively deepening cyclone in the eastern Pacific. Mon. Wea. Rev., 116, 20812105, doi:10.1175/1520-0493(1988)116<2081:NSOAED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and Coauthors, 1998: The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, doi:10.1007/s00585-997-0090-6.

    • Search Google Scholar
    • Export Citation
  • Laîné, A., G. Lapeyre, and G. Rivière, 2011: A quasigeostrophic model for moist storm tracks. J. Atmos. Sci., 68, 13061322, doi:10.1175/2011JAS3618.1.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., R. L. Elsberry, and R. M. Errico, 1996: Adjoint sensitivity of an idealized extratropical cyclone with moist physical processes. Quart. J. Roy. Meteor. Soc., 122, 18911920, doi:10.1002/qj.49712253608.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. M. Held, 2004: The role of moisture in the dynamics and energetics of turbulent baroclinic eddies. J. Atmos. Sci., 61, 16931710, doi:10.1175/1520-0469(2004)061<1693:TROMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mak, M., 1982: On moist quasi-geostrophic baroclinic instability. J. Atmos. Sci., 39, 20282037, doi:10.1175/1520-0469(1982)039<2028:OMQGBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martinez-Alvarado, O., H. Joos, J. Chagnon, M. Boettcher, S. L. Gray, R. S. Plant, J. Methven, and H. Wernli, 2014: The dichotomous structure of the warm conveyor belt. Quart. J. Roy. Meteor. Soc., 140, 18091824, doi:10.1002/qj.2276.

    • Search Google Scholar
    • Export Citation
  • Oruba, L., G. Lapeyre, and G. Rivière, 2012: On the northward motion of midlatitude cyclones in a barotropic meandering jet. J. Atmos. Sci., 69, 17931810, doi:10.1175/JAS-D-11-0267.1.

    • Search Google Scholar
    • Export Citation
  • Oruba, L., G. Lapeyre, and G. Rivière, 2013: On the poleward motion of midlatitude cyclones in a baroclinic meandering jet. J. Atmos. Sci., 70, 26292649, doi:10.1175/JAS-D-12-0341.1.

    • Search Google Scholar
    • Export Citation
  • Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, 620 pp.

  • Parker, D. J., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci., 52, 16991711, doi:10.1175/1520-0469(1995)052<1699:CCHIAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pavan, V., N. Hall, P. Valdes, and M. Blackburn, 1999: The importance of moisture distribution for the growth and energetics of mid-latitude systems. Ann. Geophys., 17, 242256, doi:10.1007/s00585-999-0242-y.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 97, 457482, doi:10.1002/qj.49709741407.

    • Search Google Scholar
    • Export Citation
  • Pinty, J.-P., and P. Jabouille, 1998: A mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitations. Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.

  • Reed, R. J., M. T. Stoelinga, and Y.-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120, 893913, doi:10.1175/1520-0493(1992)120<0893:AMASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. A. Grell, and Y.-H. Kuo, 1993a: The ERICA IOP 5 storm. Part I: Analysis and simulation. Mon. Wea. Rev., 121, 15771594, doi:10.1175/1520-0493(1993)121<1577:TEISPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. A. Grell, and Y.-H. Kuo, 1993b: The ERICA IOP 5 storm. Part II: Sensitivity tests and further diagnosis based on model output. Mon. Wea. Rev., 121, 15951612, doi:10.1175/1520-0493(1993)121<1595:TEISPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ricard, D., C. Lac, S. Riette, R. Legrand, and A. Mary, 2013: Kinetic energy spectra characteristics of two convection-permitting limited-area models AROME and Meso-NH. Quart. J. Roy. Meteor. Soc., 139, 13271341, doi:10.1002/qj.2025.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2008: Barotropic regeneration of upper-level synoptic disturbances in different configurations of the zonal weather regime. J. Atmos. Sci., 65, 31593178, doi:10.1175/2008JAS2603.1.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., and A. Joly, 2006a: Role of the low-frequency deformation field on the explosive growth of extratropical cyclones at the jet exit. Part I: Barotropic critical region. J. Atmos. Sci., 63, 19651981, doi:10.1175/JAS3728.1.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., and A. Joly, 2006b: Role of the low-frequency deformation field on the explosive growth of extratropical cyclones at the jet exit. Part II: Baroclinic critical region. J. Atmos. Sci., 63, 19821995, doi:10.1175/JAS3729.1.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., P. Arbogast, K. Maynard, and A. Joly, 2010: The essential ingredients leading to the explosive growth stage of the European wind storm Lothar of Christmas 1999. Quart. J. Roy. Meteor. Soc., 136, 638652, doi:10.1002/qj.585.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., P. Arbogast, G. Lapeyre, and K. Maynard, 2012: A potential vorticity perspective on the motion of a mid-latitude winter storm. Geophys. Res. Lett.,39, L12808, doi:10.1029/2012GL052440.

  • Robertson, F. R., and P. J. Smith, 1983: The impact of model moist processes on the energetics of extratropical cyclones. Mon. Wea. Rev., 111, 723744, doi:10.1175/1520-0493(1983)111<0723:TIOMMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 17811794, doi:10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., H. Wernli, and L. Papritz, 2013: Warm conveyor belts in idealized moist baroclinic wave simulations. J. Atmos. Sci., 70, 627652, doi:10.1175/JAS-D-12-0147.1.

    • Search Google Scholar
    • Export Citation
  • Smith, P. J., P. M. Dare, and S.-J. Lin, 1984: The impact of latent heat release on synoptic-scale vertical motions and the development of an extratropical cyclone system. Mon. Wea. Rev., 112, 24212430, doi:10.1175/1520-0493(1984)112<2421:TIOLHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874, doi:10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., 2004: Weather forecasting: A centenary perspective. Weather, 59, 332335, doi:10.1256/wea.87.04.

  • Uccellini, L. W., 1990: Processes contributing to the rapid development of extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 81–105.

  • Wallace, J. M., G.-H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45, 439462, doi:10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405429, doi:10.1256/003590002321042036.

    • Search Google Scholar
    • Export Citation
  • Zimmerman, J. E., P. J. Smith, and D. R. Smith, 1989: The role of latent heat release in the evolution of a weak extratropical cyclone. Mon. Wea. Rev., 117, 10391057, doi:10.1175/1520-0493(1989)117<1039:TROLHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 57 5
PDF Downloads 104 44 3

Role of Moist Processes in the Tracks of Idealized Midlatitude Surface Cyclones

View More View Less
  • 1 CNRM-GAME, Météo-France, Toulouse, France
  • | 2 Laboratoire de Météorologie Dynamique/IPSL, and École Normale Supérieure/CNRS/Université Pierre et Marie Curie, Paris, France
  • | 3 CNRM-GAME, Météo-France, Toulouse, France
Restricted access

Abstract

The effects of moist processes on the tracks of midlatitude surface cyclones are studied by performing idealized mesoscale simulations. In each simulation, a finite-amplitude surface cyclone is initialized on the warm-air side of a zonal baroclinic jet. For some simulations, an upper-level cyclonic anomaly upstream of the surface cyclone is also added initially. Sensitivities to the upper-level perturbation and moist processes are analyzed by both performing a relative vorticity budget analysis and adopting a potential vorticity (PV) perspective.

Whatever the simulation, there is a systematic crossing of the zonal jet by the surface cyclone occurring after roughly 30 h. A PV inversion tool shows that it is the nonlinear advection of the surface cyclone by the upper-level PV dipole, which explains the cross-jet motion of the surface cyclone. The simulation with an initial upper-level cyclonic anomaly creates a stronger surface cyclone and a more intense upper-level PV dipole than the simulation without it. It results in faster northward and slower eastward motions of the surface cyclone.

A moist run including full microphysics has a more intense surface cyclone and induces a faster northeastward motion than the dry run. The faster eastward motion is due to the diabatically produced cyclonic circulation at low levels. The faster northward motion is explained by the stronger upper-level anticyclone due to released latent heat, together with the closer location of the surface cyclone to the upper-level anticyclone. Finally, a moist run with only condensation and evaporation exhibits less latent heat release and a slower northeastward motion of the surface cyclone than the full moist run.

Corresponding author address: Benoît Coronel, CNRM-GAME, Météo-France, 42 Avenue Gaspard Coriolis, 31100 Toulouse, France. E-mail: benoit.coronel@meteo.fr

Abstract

The effects of moist processes on the tracks of midlatitude surface cyclones are studied by performing idealized mesoscale simulations. In each simulation, a finite-amplitude surface cyclone is initialized on the warm-air side of a zonal baroclinic jet. For some simulations, an upper-level cyclonic anomaly upstream of the surface cyclone is also added initially. Sensitivities to the upper-level perturbation and moist processes are analyzed by both performing a relative vorticity budget analysis and adopting a potential vorticity (PV) perspective.

Whatever the simulation, there is a systematic crossing of the zonal jet by the surface cyclone occurring after roughly 30 h. A PV inversion tool shows that it is the nonlinear advection of the surface cyclone by the upper-level PV dipole, which explains the cross-jet motion of the surface cyclone. The simulation with an initial upper-level cyclonic anomaly creates a stronger surface cyclone and a more intense upper-level PV dipole than the simulation without it. It results in faster northward and slower eastward motions of the surface cyclone.

A moist run including full microphysics has a more intense surface cyclone and induces a faster northeastward motion than the dry run. The faster eastward motion is due to the diabatically produced cyclonic circulation at low levels. The faster northward motion is explained by the stronger upper-level anticyclone due to released latent heat, together with the closer location of the surface cyclone to the upper-level anticyclone. Finally, a moist run with only condensation and evaporation exhibits less latent heat release and a slower northeastward motion of the surface cyclone than the full moist run.

Corresponding author address: Benoît Coronel, CNRM-GAME, Météo-France, 42 Avenue Gaspard Coriolis, 31100 Toulouse, France. E-mail: benoit.coronel@meteo.fr
Save