Formation and Maintenance of the Tropical Cold-Point Tropopause in a Dry Dynamic-Core GCM

Joowan Kim Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Joowan Kim in
Current site
Google Scholar
PubMed
Close
and
Seok-Woo Son School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Seok-Woo Son in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The formation of the tropical cold-point tropopause (CPT) is examined using a dry primitive equation model driven by the Held–Suarez forcing. Without moist and realistic radiative processes, the dry model successfully reproduces the zonal-mean structure of the CPT. The modeled CPT is appreciably colder (~10 K) than the prescribed equilibrium temperature, and it is maintained by upwelling in the tropical upper troposphere and lower stratosphere (UTLS). A transient simulation starting from an axisymmetric steady state without the CPT shows that the evolution and maintenance of the CPT are closely related to the zonal-mean-flow response to wave driving in the stratosphere. The transformed Eulerian-mean analysis indicates that the wave driving is mostly due to convergence of synoptic-scale waves originating from the midlatitude troposphere and propagating into the subtropical UTLS in this model simulation. The modeled CPT also shows a large sensitivity to increased baroclinicity in the equilibrium temperature. Although planetary-scale waves are not considered in this simulation, the result confirms that wave-driven upwelling in the tropical UTLS is a crucial process for the formation and maintenance of the CPT. In addition, it also implies that synoptic-scale waves may play a nonnegligible role in this mechanism, particularly in the seasons when planetary-scale wave activity in the lower stratosphere is weak.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Joowan Kim, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: joowan@ucar.edu

Abstract

The formation of the tropical cold-point tropopause (CPT) is examined using a dry primitive equation model driven by the Held–Suarez forcing. Without moist and realistic radiative processes, the dry model successfully reproduces the zonal-mean structure of the CPT. The modeled CPT is appreciably colder (~10 K) than the prescribed equilibrium temperature, and it is maintained by upwelling in the tropical upper troposphere and lower stratosphere (UTLS). A transient simulation starting from an axisymmetric steady state without the CPT shows that the evolution and maintenance of the CPT are closely related to the zonal-mean-flow response to wave driving in the stratosphere. The transformed Eulerian-mean analysis indicates that the wave driving is mostly due to convergence of synoptic-scale waves originating from the midlatitude troposphere and propagating into the subtropical UTLS in this model simulation. The modeled CPT also shows a large sensitivity to increased baroclinicity in the equilibrium temperature. Although planetary-scale waves are not considered in this simulation, the result confirms that wave-driven upwelling in the tropical UTLS is a crucial process for the formation and maintenance of the CPT. In addition, it also implies that synoptic-scale waves may play a nonnegligible role in this mechanism, particularly in the seasons when planetary-scale wave activity in the lower stratosphere is weak.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Joowan Kim, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: joowan@ucar.edu
Save
  • Abalos, M., W. J. Randel, D. E. Kinnison, and E. Serrano, 2013: Quantifying tracer transport in the tropical lower stratosphere using WACCM. Atmos. Chem. Phys., 13, 10 59110 607, doi:10.5194/acp-13-10591-2013.

    • Search Google Scholar
    • Export Citation
  • Abalos, M., W. J. Randel, and E. Serrano, 2014: Dynamical forcing of subseasonal variability in the tropical Brewer–Dobson circulation. J. Atmos. Sci., 71, 3439–3453, doi:10.1175/JAS-D-13-0366.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67, 25822600, doi:10.1175/2010JAS3287.1.

  • Birner, T., and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827, doi:10.5194/acp-11-817-2011.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2010: Regime transitions of steady and time-dependent Hadley circulations: Comparison of axisymmetric and eddy-permitting simulations. J. Atmos. Sci., 67, 16431654, doi:10.1175/2009JAS3294.1.

    • Search Google Scholar
    • Export Citation
  • Branscome, L., W. J. Gutowski Jr., and D. Stewart, 1989: Effect of surface fluxes on the nonlinear development of baroclinic waves. J. Atmos. Sci., 46, 460475, doi:10.1175/1520-0469(1989)046<0460:EOSFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brewer, A., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, doi:10.1002/qj.49707532603.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and P. Zurita-Gotor, 2008: The tropospheric jet response to prescribed zonal forcing in an idealized atmospheric model. J. Atmos. Sci., 65, 22542271, doi:10.1175/2007JAS2589.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and L. Sun, 2011: Mechanisms of the tropical upwelling branch of the Brewer–Dobson circulation: The role of extratropical waves. J. Atmos. Sci., 68, 28782892, doi:10.1175/JAS-D-11-044.1.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., C. K. Liang, and K. H. Rosenlof, 2013: Interannual variability of tropical tropopause layer clouds. Geophys. Res. Lett., 40, 28622866, doi:10.1002/grl.50512.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R., 1968: Planetary Rossby waves propagating vertically through weak westerly wind wave guides. J. Atmos. Sci., 25, 9841002, doi:10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. Proc. Roy. Soc. London,A236, 187–193, doi:10.1098/rspa.1956.0127.

  • Forster, P. M. de F., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, doi:10.1029/2001GL013909.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Garcia, R., 1987: On the mean meridional circulation of the middle atmosphere. J. Atmos. Sci., 44, 35993609, doi:10.1175/1520-0469(1987)044<3599:OTMMCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garny, H., M. Dameris, W. Randel, G. E. Bodeker, and R. Deckert, 2011: Dynamically forced increase of tropical upwelling in the lower stratosphere. J. Atmos. Sci., 68, 12141233, doi:10.1175/2011JAS3701.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and L. M. Polvani, 2009: Stratosphere–troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability. J. Climate, 22, 19201933, doi:10.1175/2008JCLI2548.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and T. Birner, 2007: Insights into tropical tropopause layer processes using global models. J. Geophys. Res., 112, D23104, doi:10.1029/2007JD008945.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., M. L. Salby, and F. Sassi, 2002: Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107, doi:10.1029/2001JD001048.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. M. Forster, M. Fujiwara, Q. Fu, H. Vömel, L. K. Gohar, C. Johanson, and M. Ammerman, 2004: Radiation balance of the tropical tropopause layer. J. Geophys. Res., 109, D07103, doi:10.1029/2003JD004190.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and D. W. J. Thompson, 2013: On the signatures of equatorial and extratropical wave forcing in tropical tropopause layer temperatures. J. Atmos. Sci., 70, 10841102, doi:10.1175/JAS-D-12-0163.1.

    • Search Google Scholar
    • Export Citation
  • Haqq-Misra, J., S. Lee, and D. M. W. Frierson, 2011: Tropopause structure and the role of eddies. J. Atmos. Sci., 68, 29302944, doi:10.1175/JAS-D-11-087.1.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651679, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Highwood, E., and B. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604, doi:10.1002/qj.49712454911.

  • Holloway, C. E., and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J. Atmos. Sci., 64, 14671487, doi:10.1175/JAS3907.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and D. C. Kriete, 1982: Thermodynamic and circulation characteristics of winter monsoon tropical mesoscale convection. Mon. Wea. Rev., 110, 18981911, doi:10.1175/1520-0493(1982)110<1898:TACCOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kerr-Munslow, A. M., and W. A. Norton, 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part I: ECMWF analyses. J. Atmos. Sci., 63, 14101419, doi:10.1175/JAS3697.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part I: Axisymmetric flow. J. Atmos. Sci., 58, 28452858, doi:10.1175/1520-0469(2001)058<2845:HCDIAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J., and S.-W. Son, 2012: Tropical cold-point tropopause: Climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultation measurements. J. Climate, 25, 53435360, doi:10.1175/JCLI-D-11-00554.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2004: Convective influence on the heat balance of the tropical tropopause layer: A cloud-resolving model study. J. Atmos. Sci., 61, 29192927, doi:10.1175/JAS-3306.1.

    • Search Google Scholar
    • Export Citation
  • Küpper, C., J. Thuburn, G. C. Craig, and T. Birner, 2004: Mass and water transport into the tropical stratosphere: A cloud-resolving simulation. J. Geophys. Res.,109, D10111, doi:10.1029/2004JD004541.

  • Labitzke, K. G., and H. van Loon, 1999: The Stratosphere: Phenomena, History, and Relevance. Springer, 179 pp.

  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385, doi:10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101, 39894006, doi:10.1029/95JD03422.

    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., and M. J. Alexander, 2014: The residual-mean circulation in the tropical tropopause layer driven by tropical waves. J. Atmos. Sci., 71, 13051322, doi:10.1175/JAS-D-13-0100.1.

    • Search Google Scholar
    • Export Citation
  • Paulik, L. C., and T. Birner, 2012: Quantifying the deep convective temperature signal within the tropical tropopause layer (TTL). Atmos. Chem. Phys., 12, 12 18312 195, doi:10.5194/acp-12-12183-2012.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 893809.

  • Plumb, R. A., and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56, 868890, doi:10.1175/1520-0469(1999)056<0868:TBDCDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, doi:10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, doi:10.1038/ngeo1733.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2002: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59, 21412152, doi:10.1175/1520-0469(2002)059<2141:TDUITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. Garcia, and F. Wu, 2008: Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65, 35843595, doi:10.1175/2008JAS2756.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63,15691586, doi:10.1175/JAS3699.1.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., R. J. Ross, J. K. Angell, and G. C. Reid, 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106, 78577878, doi:10.1029/2000JD900837.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and A. E. Dessler, 2003: Convective mixing near the tropical tropopause: Insights from seasonal variations. J. Atmos. Sci., 60, 26742685, doi:10.1175/1520-0469(2003)060<2674:CMNTTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and S. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62, 37413757, doi:10.1175/JAS3571.1.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and L. M. Polvani, 2007: Dynamical formation of an extra-tropical tropopause inversion layer in a relatively simple general circulation model. Geophys. Res. Lett., 34, L17806, doi:10.1029/2007GL030564.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., S. Lee, and S. B. Feldstein, 2007: Intraseasonal variability of the zonal-mean extratropical tropopause height. J. Atmos. Sci., 64, 608620, doi:10.1175/JAS3855.1.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., M. Ting, and L. M. Polvani, 2009: The effect of topography on storm-track intensity in a relatively simple general circulation model. J. Atmos. Sci., 66, 393411, doi:10.1175/2008JAS2742.1.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and G. C. Craig, 2000: Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci., 57, 1728, doi:10.1175/1520-0469(2000)057<0017:SIOTHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and G. C. Craig, 2002: On the temperature structure of the tropical substratosphere. J. Geophys. Res., 107, doi:10.1029/2001JD000448.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., E. P. Gerber, J. M. Wallace, and D. M. W. Frierson, 2013: The role of high-latitude waves in the intraseasonal to seasonal variability of tropical upwelling in the Brewer–Dobson circulation. J. Atmos. Sci., 70, 16311648, doi:10.1175/JAS-D-12-0174.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and J. M. Wallace, 2014: Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J. Atmos. Sci., 71, 11431157, doi:10.1175/JAS-D-13-0178.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and D. L. Hartmann, 1995: Orographic influences on the distribution and generation of atmospheric variability in a GCM. J. Atmos. Sci., 52, 2428–2443, doi:10.1175/1520-0469(1995)052<2428:OIOTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., J. Holton, and J. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169169, doi:10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 245 87 2
PDF Downloads 167 74 7