• Abalos, M., W. J. Randel, D. E. Kinnison, and E. Serrano, 2013: Quantifying tracer transport in the tropical lower stratosphere using WACCM. Atmos. Chem. Phys., 13, 10 59110 607, doi:10.5194/acp-13-10591-2013.

    • Search Google Scholar
    • Export Citation
  • Abalos, M., W. J. Randel, and E. Serrano, 2014: Dynamical forcing of subseasonal variability in the tropical Brewer–Dobson circulation. J. Atmos. Sci., 71, 3439–3453, doi:10.1175/JAS-D-13-0366.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67, 25822600, doi:10.1175/2010JAS3287.1.

  • Birner, T., and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827, doi:10.5194/acp-11-817-2011.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2010: Regime transitions of steady and time-dependent Hadley circulations: Comparison of axisymmetric and eddy-permitting simulations. J. Atmos. Sci., 67, 16431654, doi:10.1175/2009JAS3294.1.

    • Search Google Scholar
    • Export Citation
  • Branscome, L., W. J. Gutowski Jr., and D. Stewart, 1989: Effect of surface fluxes on the nonlinear development of baroclinic waves. J. Atmos. Sci., 46, 460475, doi:10.1175/1520-0469(1989)046<0460:EOSFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brewer, A., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, doi:10.1002/qj.49707532603.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, doi:10.1175/2010JCLI3228.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and P. Zurita-Gotor, 2008: The tropospheric jet response to prescribed zonal forcing in an idealized atmospheric model. J. Atmos. Sci., 65, 22542271, doi:10.1175/2007JAS2589.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and L. Sun, 2011: Mechanisms of the tropical upwelling branch of the Brewer–Dobson circulation: The role of extratropical waves. J. Atmos. Sci., 68, 28782892, doi:10.1175/JAS-D-11-044.1.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., C. K. Liang, and K. H. Rosenlof, 2013: Interannual variability of tropical tropopause layer clouds. Geophys. Res. Lett., 40, 28622866, doi:10.1002/grl.50512.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R., 1968: Planetary Rossby waves propagating vertically through weak westerly wind wave guides. J. Atmos. Sci., 25, 9841002, doi:10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dobson, G. M. B., 1956: Origin and distribution of the polyatomic molecules in the atmosphere. Proc. Roy. Soc. London,A236, 187–193, doi:10.1098/rspa.1956.0127.

  • Forster, P. M. de F., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, doi:10.1029/2001GL013909.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47, RG1004, doi:10.1029/2008RG000267.

    • Search Google Scholar
    • Export Citation
  • Garcia, R., 1987: On the mean meridional circulation of the middle atmosphere. J. Atmos. Sci., 44, 35993609, doi:10.1175/1520-0469(1987)044<3599:OTMMCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garny, H., M. Dameris, W. Randel, G. E. Bodeker, and R. Deckert, 2011: Dynamically forced increase of tropical upwelling in the lower stratosphere. J. Atmos. Sci., 68, 12141233, doi:10.1175/2011JAS3701.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and L. M. Polvani, 2009: Stratosphere–troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability. J. Climate, 22, 19201933, doi:10.1175/2008JCLI2548.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and T. Birner, 2007: Insights into tropical tropopause layer processes using global models. J. Geophys. Res., 112, D23104, doi:10.1029/2007JD008945.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., M. L. Salby, and F. Sassi, 2002: Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107, doi:10.1029/2001JD001048.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. M. Forster, M. Fujiwara, Q. Fu, H. Vömel, L. K. Gohar, C. Johanson, and M. Ammerman, 2004: Radiation balance of the tropical tropopause layer. J. Geophys. Res., 109, D07103, doi:10.1029/2003JD004190.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and D. W. J. Thompson, 2013: On the signatures of equatorial and extratropical wave forcing in tropical tropopause layer temperatures. J. Atmos. Sci., 70, 10841102, doi:10.1175/JAS-D-12-0163.1.

    • Search Google Scholar
    • Export Citation
  • Haqq-Misra, J., S. Lee, and D. M. W. Frierson, 2011: Tropopause structure and the role of eddies. J. Atmos. Sci., 68, 29302944, doi:10.1175/JAS-D-11-087.1.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651679, doi:10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Highwood, E., and B. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604, doi:10.1002/qj.49712454911.

  • Holloway, C. E., and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J. Atmos. Sci., 64, 14671487, doi:10.1175/JAS3907.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and D. C. Kriete, 1982: Thermodynamic and circulation characteristics of winter monsoon tropical mesoscale convection. Mon. Wea. Rev., 110, 18981911, doi:10.1175/1520-0493(1982)110<1898:TACCOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kerr-Munslow, A. M., and W. A. Norton, 2006: Tropical wave driving of the annual cycle in tropical tropopause temperatures. Part I: ECMWF analyses. J. Atmos. Sci., 63, 14101419, doi:10.1175/JAS3697.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part I: Axisymmetric flow. J. Atmos. Sci., 58, 28452858, doi:10.1175/1520-0469(2001)058<2845:HCDIAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J., and S.-W. Son, 2012: Tropical cold-point tropopause: Climatology, seasonal cycle, and intraseasonal variability derived from COSMIC GPS radio occultation measurements. J. Climate, 25, 53435360, doi:10.1175/JCLI-D-11-00554.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2004: Convective influence on the heat balance of the tropical tropopause layer: A cloud-resolving model study. J. Atmos. Sci., 61, 29192927, doi:10.1175/JAS-3306.1.

    • Search Google Scholar
    • Export Citation
  • Küpper, C., J. Thuburn, G. C. Craig, and T. Birner, 2004: Mass and water transport into the tropical stratosphere: A cloud-resolving simulation. J. Geophys. Res.,109, D10111, doi:10.1029/2004JD004541.

  • Labitzke, K. G., and H. van Loon, 1999: The Stratosphere: Phenomena, History, and Relevance. Springer, 179 pp.

  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385, doi:10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101, 39894006, doi:10.1029/95JD03422.

    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., and M. J. Alexander, 2014: The residual-mean circulation in the tropical tropopause layer driven by tropical waves. J. Atmos. Sci., 71, 13051322, doi:10.1175/JAS-D-13-0100.1.

    • Search Google Scholar
    • Export Citation
  • Paulik, L. C., and T. Birner, 2012: Quantifying the deep convective temperature signal within the tropical tropopause layer (TTL). Atmos. Chem. Phys., 12, 12 18312 195, doi:10.5194/acp-12-12183-2012.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 893809.

  • Plumb, R. A., and J. Eluszkiewicz, 1999: The Brewer–Dobson circulation: Dynamics of the tropical upwelling. J. Atmos. Sci., 56, 868890, doi:10.1175/1520-0469(1999)056<0868:TBDCDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, doi:10.1029/2001GL014284.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48, 688697, doi:10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169176, doi:10.1038/ngeo1733.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2002: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59, 21412152, doi:10.1175/1520-0469(2002)059<2141:TDUITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. Garcia, and F. Wu, 2008: Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65, 35843595, doi:10.1175/2008JAS2756.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2006: Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci., 63,15691586, doi:10.1175/JAS3699.1.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., R. J. Ross, J. K. Angell, and G. C. Reid, 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106, 78577878, doi:10.1029/2000JD900837.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and A. E. Dessler, 2003: Convective mixing near the tropical tropopause: Insights from seasonal variations. J. Atmos. Sci., 60, 26742685, doi:10.1175/1520-0469(2003)060<2674:CMNTTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and S. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62, 37413757, doi:10.1175/JAS3571.1.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and L. M. Polvani, 2007: Dynamical formation of an extra-tropical tropopause inversion layer in a relatively simple general circulation model. Geophys. Res. Lett., 34, L17806, doi:10.1029/2007GL030564.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., S. Lee, and S. B. Feldstein, 2007: Intraseasonal variability of the zonal-mean extratropical tropopause height. J. Atmos. Sci., 64, 608620, doi:10.1175/JAS3855.1.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., M. Ting, and L. M. Polvani, 2009: The effect of topography on storm-track intensity in a relatively simple general circulation model. J. Atmos. Sci., 66, 393411, doi:10.1175/2008JAS2742.1.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and G. C. Craig, 2000: Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci., 57, 1728, doi:10.1175/1520-0469(2000)057<0017:SIOTHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., and G. C. Craig, 2002: On the temperature structure of the tropical substratosphere. J. Geophys. Res., 107, doi:10.1029/2001JD000448.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., E. P. Gerber, J. M. Wallace, and D. M. W. Frierson, 2013: The role of high-latitude waves in the intraseasonal to seasonal variability of tropical upwelling in the Brewer–Dobson circulation. J. Atmos. Sci., 70, 16311648, doi:10.1175/JAS-D-12-0174.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and J. M. Wallace, 2014: Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J. Atmos. Sci., 71, 11431157, doi:10.1175/JAS-D-13-0178.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and D. L. Hartmann, 1995: Orographic influences on the distribution and generation of atmospheric variability in a GCM. J. Atmos. Sci., 52, 2428–2443, doi:10.1175/1520-0469(1995)052<2428:OIOTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., J. Holton, and J. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169169, doi:10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 34 2
PDF Downloads 51 22 2

Formation and Maintenance of the Tropical Cold-Point Tropopause in a Dry Dynamic-Core GCM

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • | 2 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
Restricted access

Abstract

The formation of the tropical cold-point tropopause (CPT) is examined using a dry primitive equation model driven by the Held–Suarez forcing. Without moist and realistic radiative processes, the dry model successfully reproduces the zonal-mean structure of the CPT. The modeled CPT is appreciably colder (~10 K) than the prescribed equilibrium temperature, and it is maintained by upwelling in the tropical upper troposphere and lower stratosphere (UTLS). A transient simulation starting from an axisymmetric steady state without the CPT shows that the evolution and maintenance of the CPT are closely related to the zonal-mean-flow response to wave driving in the stratosphere. The transformed Eulerian-mean analysis indicates that the wave driving is mostly due to convergence of synoptic-scale waves originating from the midlatitude troposphere and propagating into the subtropical UTLS in this model simulation. The modeled CPT also shows a large sensitivity to increased baroclinicity in the equilibrium temperature. Although planetary-scale waves are not considered in this simulation, the result confirms that wave-driven upwelling in the tropical UTLS is a crucial process for the formation and maintenance of the CPT. In addition, it also implies that synoptic-scale waves may play a nonnegligible role in this mechanism, particularly in the seasons when planetary-scale wave activity in the lower stratosphere is weak.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Joowan Kim, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: joowan@ucar.edu

Abstract

The formation of the tropical cold-point tropopause (CPT) is examined using a dry primitive equation model driven by the Held–Suarez forcing. Without moist and realistic radiative processes, the dry model successfully reproduces the zonal-mean structure of the CPT. The modeled CPT is appreciably colder (~10 K) than the prescribed equilibrium temperature, and it is maintained by upwelling in the tropical upper troposphere and lower stratosphere (UTLS). A transient simulation starting from an axisymmetric steady state without the CPT shows that the evolution and maintenance of the CPT are closely related to the zonal-mean-flow response to wave driving in the stratosphere. The transformed Eulerian-mean analysis indicates that the wave driving is mostly due to convergence of synoptic-scale waves originating from the midlatitude troposphere and propagating into the subtropical UTLS in this model simulation. The modeled CPT also shows a large sensitivity to increased baroclinicity in the equilibrium temperature. Although planetary-scale waves are not considered in this simulation, the result confirms that wave-driven upwelling in the tropical UTLS is a crucial process for the formation and maintenance of the CPT. In addition, it also implies that synoptic-scale waves may play a nonnegligible role in this mechanism, particularly in the seasons when planetary-scale wave activity in the lower stratosphere is weak.

Current affiliation: National Center for Atmospheric Research, Boulder, Colorado.

Corresponding author address: Joowan Kim, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: joowan@ucar.edu
Save