• Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17, 173265, doi:10.1016/B978-0-12-460817-7.50009-4.

    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, doi:10.1175/JAS-D-11-0317.1.

    • Search Google Scholar
    • Export Citation
  • Bradshaw, P., and Y. Koh, 1981: A note on Poisson’s equation for pressure in a turbulent flow. Phys. Fluids, 24, 777777, doi:10.1063/1.863442.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, doi:10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Das, P., 1979: A non-Archimedean approach to the equations of convection dynamics. J. Atmos. Sci., 36, 21832190, doi:10.1175/1520-0469(1979)036<2183:ANAATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2003: An expression for effective buoyancy in surroundings with horizontal density gradients. J. Atmos. Sci., 60, 29222925, doi:10.1175/1520-0469(2003)060<2922:AEFEBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., A. P. Siebesma, H. J. Jonker, and Y. de Voogd, 2012: Parameterization of the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev., 140, 24242436, doi:10.1175/MWR-D-11-00277.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132, 853863, doi:10.1175/1520-0493(2004)132<0853:IBARQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci., 42, 2381240, doi:10.1175/1520-0469(1985)042<2381:TDNMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hacker, J., P. Linden, and S. Dalziel, 1996: Mixing in lock-release gravity currents. Dyn. Atmos. Oceans, 24, 183195, doi:10.1016/0377-0265(95)00443-2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1994: Cloud Dynamics. International Geophysics Series, Vol. 53, Academic Press, 573 pp.

  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, doi:10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., Q. Fu, K. Liou, and H.-N. S. Chin, 1995a: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281287, doi:10.1175/1520-0450-34.1.281.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995b: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part II: Boundary-layer circulation. J. Atmos. Sci., 52, 28512868, doi:10.1175/1520-0469(1995)052<2851:NSOTST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, doi:10.1175/JAS3723.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • List, R., and E. P. Lozowski, 1970: Pressure perturbations and buoyancy in convective clouds. J. Atmos. Sci., 27, 168170, doi:10.1175/1520-0469(1970)027<0168:PPABIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41, 28362848, doi:10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, doi:10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Margolin, L., W. Rider, and F. Grinstein, 2006: Modeling turbulent flow with implicit LES. J. Turbul., 7, doi:10.1080/14685240500331595.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2011: Mesoscale Meteorology in Midlatitudes. Vol. 2. Wiley-Blackwell, 430 pp.

  • Mishra, S. K., 2011: Influence of convective adjustment time scale on the tropical transient activity. Meteor. Atmos. Phys., 114, 1734, doi:10.1007/s00703-011-0154-8.

    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., and J. Srinivasan, 2010: Sensitivity of the simulated precipitation to changes in convective relaxation time scale. Ann. Geophys., 28, 18271846, doi:10.5194/angeo-28-1827-2010.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.,102, 16 663–16 682, doi:10.1029/97JD00237.

  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the community atmosphere model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, doi:10.1175/JCLI-D-12-00236.1.

    • Search Google Scholar
    • Export Citation
  • Qian, Y., and Coauthors, 2015: Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5. J. Adv. Model. Earth Syst., doi:10.1002/2014MS000354, in press.

    • Search Google Scholar
    • Export Citation
  • Rio, C., and Coauthors, 2013: Control of deep convection by sub-cloud lifting processes: The ALP closure in the LMDZ5B general circulation model. Climate Dyn., 40, 2271–2292, doi:10.1007/s00382-012-1506-x.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2008: The dry-entropy budget of a moist atmosphere. J. Atmos. Sci., 65, 37793799, doi:10.1175/2008JAS2679.1.

  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, doi:10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernández-Deckers, M. Colin, and F. Robinson, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, doi:10.1175/JAS-D-12-0220.1.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, doi:10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torri, G., Z. Kuang, and Y. Tian, 2015: Mechanisms for convection triggering by cold pools. Geophys. Res. Lett., 42, 1943–1950, doi:10.1002/2015GL063227.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and M. Zhang, 2014: Vertical velocity in shallow convection for different plume types. J. Adv. Model. Earth Syst.,6, 478–489, doi:10.1002/2014MS000318.

  • Weisman, M. L., and R. Rotunno, 2004: A theory for strong long-lived squall lines, revisited. J. Atmos. Sci., 61, 361382, doi:10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 2001: Updraft and downdraft statistics of simulated tropical and midlatitude cumulus convection. J. Atmos. Sci., 58, 16301649, doi:10.1175/1520-0469(2001)058<1630:UADSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 366 225 5
PDF Downloads 333 213 4

Effective Buoyancy, Inertial Pressure, and the Mechanical Generation of Boundary Layer Mass Flux by Cold Pools

View More View Less
  • 1 Department of Physics, University of California, Berkeley, and Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
  • | 2 Department of Earth and Planetary Science, University of California, Berkeley, and Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
Restricted access

Abstract

The Davies-Jones formulation of effective buoyancy is used to define inertial and buoyant components of vertical force and to develop an intuition for these components by considering simple cases. This decomposition is applied to the triggering of new boundary layer mass flux by cold pools in a cloud-resolving simulation of radiative–convective equilibrium (RCE). The triggering is found to be dominated by inertial forces, and this is explained by estimating the ratio of the inertial forcing to the buoyancy forcing, which scales as H/h, where H is the characteristic height of the initial downdraft and h is the characteristic height of the mature cold pool’s gust front. In a simulation of the transition from shallow to deep convection, the buoyancy forcing plays a dominant role in triggering mass flux in the shallow regime, but the force balance tips in favor of inertial forcing just as precipitation sets in, consistent with the RCE results.

Corresponding author address: Nadir Jeevanjee, Department of Physics, University of California, Berkeley, 366 LeConte Hall MC 7300, Berkeley, CA 94720. E-mail: jeevanje@berkeley.edu

Abstract

The Davies-Jones formulation of effective buoyancy is used to define inertial and buoyant components of vertical force and to develop an intuition for these components by considering simple cases. This decomposition is applied to the triggering of new boundary layer mass flux by cold pools in a cloud-resolving simulation of radiative–convective equilibrium (RCE). The triggering is found to be dominated by inertial forces, and this is explained by estimating the ratio of the inertial forcing to the buoyancy forcing, which scales as H/h, where H is the characteristic height of the initial downdraft and h is the characteristic height of the mature cold pool’s gust front. In a simulation of the transition from shallow to deep convection, the buoyancy forcing plays a dominant role in triggering mass flux in the shallow regime, but the force balance tips in favor of inertial forcing just as precipitation sets in, consistent with the RCE results.

Corresponding author address: Nadir Jeevanjee, Department of Physics, University of California, Berkeley, 366 LeConte Hall MC 7300, Berkeley, CA 94720. E-mail: jeevanje@berkeley.edu
Save