• Andersen, T. K., D. E. Radcliffe, and J. M. Shepherd, 2013: Quantifying surface energy fluxes in the vicinity of inland-tracking tropical cyclones. J. Appl. Meteor. Climatol., 52, 27972808, doi:10.1175/JAMC-D-13-035.1.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and S. W. Chang, 1978: Response of the hurricane boundary layer to changes of sea surface temperature in a numerical model. J. Atmos. Sci., 35, 12401255, doi:10.1175/1520-0469(1978)035<1240:ROTHBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and P. Fuentes, 2010: Eye excess energy and the rapid intensification of Hurricane Lili (2002). Mon. Wea. Rev., 138, 14461458, doi:10.1175/2009MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulation of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, doi:10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1974: Further comments on “A comparison of the equivalent potential temperature and the static energy.” J. Atmos. Sci., 31, 17131715, doi:10.1175/1520-0469(1974)031<1713:FCOCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., R. W. Burpee, and F. D. Marks, 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 18871909, doi:10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci., 66, 148158, doi:10.1175/2008JAS2707.1.

    • Search Google Scholar
    • Export Citation
  • Dolling, K. P., and G. M. Barnes, 2012: The creation of a high equivalent potential temperature reservoir in Tropical Storm Humberto (2001) and its possible role in storm deepening. Mon. Wea. Rev., 140, 492505, doi:10.1175/MWR-D-11-00068.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., A. A. Wing, and E. M. Vincent, 2014: Radiative-convective instability. J. Adv. Model. Earth. Syst., 5, 75–90, doi:10.1002/2013MS000270.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., and R. C. Easter, 2006: A Lagrangian particle dispersion model compatible with WRF. Extended Abstracts, Seventh WRF Users’ Workshop, Boulder, CO, NCAR, 6.2. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/PSession06/P6_02_Fast.pdf.]

  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone II. Dynamics and energetics. Mon. Wea. Rev., 105, 11361150, doi:10.1175/1520-0493(1977)105<1136:TSAEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. Nieto, R. M. Trigo, S. M. Vicente-Serrano, and J. I. Lopez-Moreno, 2010: Where does the Iberian Peninsula moisture come from? An answer based on a Lagrangian approach. J. Hydrometeor., 11, 421436, doi:10.1175/2009JHM1182.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze, 2008: Kinematic structure of convective-scale elements in the rainbands of Katrina and Rita (2005). J. Geophys. Res., 113, D15108, doi:10.1029/2007JD009429.

    • Search Google Scholar
    • Export Citation
  • Hogsett, W., and D.-L. Zhang, 2009: Numerical simulation of Hurricane Bonnie (1998). Part III: Energetics. J. Atmos. Sci., 66, 26782696, doi:10.1175/2009JAS3087.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hong, X., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 13471365, doi:10.1175/1520-0493(2000)128<1347:TIBHOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, doi:10.1175/2009MWR2989.1.

  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, doi:10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2010: Tropical cyclone structure and dynamics. Global Perspectives on Tropical Cyclones: From Science to Mitigation, J. C. L. Chan and J. D. Kepert, Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 4, World Scientific, 3–53.

  • Lee, C., and S. S. Chen, 2014: Stable boundary layer and its impacts on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Wea. Rev., 142, 19271944, doi:10.1175/MWR-D-13-00122.1.

    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., and W. Zhou, 2012: Changes in western Pacific tropical cyclones associated with the El Niño–Southern Oscillation cycle. J. Climate, 25, 58645878, doi:10.1175/JCLI-D-11-00430.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor. Climatol., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, X. Huang, and X. Cheng, 2013: The effects of ocean feedback on tropical cyclone energetics under idealized air–sea interaction conditions. J. Geophys. Res., 118, 9778–9788, doi:10.1002/jgrd.50780.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and F. E. Robitaille, 1970: A comparison of the equivalent potential temperature and the static energy. J. Atmos. Sci., 27, 327329, doi:10.1175/1520-0469(1970)027<0327:ACOTEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12A, 120, doi:10.1111/j.2153-3490.1960.tb01279.x.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1981: Observational analysis of tropical cyclone formation. Part III: Budget analysis. J. Atmos. Sci., 38, 11521166, doi:10.1175/1520-0469(1981)038<1152:OAOTCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere (in Russian). Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., D. S. Nolan, and S. J. Majumdar, 2013: A highly configurable vortex initialization method for tropical cyclones. Mon. Wea. Rev., 141, 35563575, doi:10.1175/MWR-D-12-00266.1.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1979: Climate and Weather in the Tropics. Academic Press, 611 pp.

  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1992: Hurricane vortex motion and evolution in a three-layer model. J. Atmos. Sci., 49, 140153, doi:10.1175/1520-0469(1992)049<0140:HVMAEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 2000: Potential vorticity asymmetries and tropical cyclone evolution in a moist three-layer model. J. Atmos. Sci., 57, 36453662, doi:10.1175/1520-0469(2000)057<3645:PVAATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Smith, R. K., M. T. Montgomery, and V. S. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, doi:10.1002/qj.428.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2004: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, doi:10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. James, 2005: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between Earth’s ocean basins and river catchments. J. Hydrometeor., 6, 961984, doi:10.1175/JHM470.1.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, doi:10.5194/acp-5-2461-2005.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97116, doi:10.1175/2009JAS3143.1.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., J. C. L. Chan, and W. Zhou, 2008: A simple empirical model for estimating the intensity change of tropical cyclones after landfall along the south China coast. J. Appl. Meteor. Climatol., 47, 326338, doi:10.1175/2007JAMC1633.1.

    • Search Google Scholar
    • Export Citation
  • Wroe, D. R., and G. M. Barnes, 2003: Inflow layer energetics of Hurricane Bonnie (1998) near landfall. Mon. Wea. Rev., 131, 16001612, doi:10.1175//2547.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 18991911, doi:10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of the bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, doi:10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, doi:10.1175/MWR-D-10-05017.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., R. K. Smith, and W. Ulrich, 2001: A minimal three-dimensional tropical cyclone model. J. Atmos. Sci., 58, 19241944, doi:10.1175/1520-0469(2001)058<1924:AMTDTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., W. Ulrich, and R. K. Smith, 2004: Ocean effects on tropical cyclone intensification and inner-core asymmetries. J. Atmos. Sci., 61, 12451258, doi:10.1175/1520-0469(2004)061<1245:OEOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 316 156 8
PDF Downloads 299 146 6

A Potential Problem with the Application of Moist Static Energy in Tropical Cyclone Studies

View More View Less
  • 1 College of Meteorology and Oceanography, People’s Liberation Army University of Science and Technology, and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 College of Meteorology and Oceanography, People’s Liberation Army University of Science and Technology, Nanjing, China
Restricted access

Abstract

The moist static energy (MSE) is derived from the first law of thermodynamics and has been widely used in tropical cyclone (TC) studies because of its energetic and conventionally recognized conservation properties. This study investigates the validation of the MSE application in TC systems based on cloud-resolving numerical simulations. By examining the approximations made in deriving the MSE, neglecting the horizontal advection of pressure (namely, the generation of kinetic energy) relative to the vertical advection of pressure is found to be in error in the boundary layer of TCs with the horizontal advection of pressure even being several times larger than the vertical advection of pressure near the surface. Such a problematic approximation has broken down the conservation property of MSE in adiabatic conditions. An investigation of the energetic characteristics based on an MSE budget equation demonstrates that the MSE has created significant bias in evaluating the energy transport in the inner region of the TC boundary layer. Neglecting the kinetic energy conversion term in the boundary layer leads to a more strengthened cool-pool feature of MSE relative to the equivalent potential temperature; therefore, the interchangeable relationship between these two terms may also be inaccurate in the boundary layer. It is concluded that, although the MSE is an instrumental term for TC studies, caution should be taken when it is used in the boundary layer of TCs.

Corresponding author address: Jianfang Fei, Department of Meteorology, College of Meteorology and Oceanography, PLA University of Science and Technology, No. 60, Shuanglong Road, Nanjing 211101, China. E-mail: feijf@sina.com

Abstract

The moist static energy (MSE) is derived from the first law of thermodynamics and has been widely used in tropical cyclone (TC) studies because of its energetic and conventionally recognized conservation properties. This study investigates the validation of the MSE application in TC systems based on cloud-resolving numerical simulations. By examining the approximations made in deriving the MSE, neglecting the horizontal advection of pressure (namely, the generation of kinetic energy) relative to the vertical advection of pressure is found to be in error in the boundary layer of TCs with the horizontal advection of pressure even being several times larger than the vertical advection of pressure near the surface. Such a problematic approximation has broken down the conservation property of MSE in adiabatic conditions. An investigation of the energetic characteristics based on an MSE budget equation demonstrates that the MSE has created significant bias in evaluating the energy transport in the inner region of the TC boundary layer. Neglecting the kinetic energy conversion term in the boundary layer leads to a more strengthened cool-pool feature of MSE relative to the equivalent potential temperature; therefore, the interchangeable relationship between these two terms may also be inaccurate in the boundary layer. It is concluded that, although the MSE is an instrumental term for TC studies, caution should be taken when it is used in the boundary layer of TCs.

Corresponding author address: Jianfang Fei, Department of Meteorology, College of Meteorology and Oceanography, PLA University of Science and Technology, No. 60, Shuanglong Road, Nanjing 211101, China. E-mail: feijf@sina.com
Save