• Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, doi:10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Cai, M., 2003: Potential vorticity intrusion index and climate variability of surface temperature. Geophys. Res. Lett., 30, 1119, doi:10.1029/2002GL015926.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and R.-C. Ren, 2007: Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J. Atmos. Sci., 64, 188019, doi:10.1175/JAS3922.1.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and C.-S. Shin, 2014: A total flow perspective of atmospheric mass and angular momentum circulations: Boreal winter mean state. J. Atmos. Sci., 71, 22442263, doi:10.1175/JAS-D-13-0175.1.

    • Search Google Scholar
    • Export Citation
  • Cellitti, M. P., J. E. Walsh, R. M. Rauber, and D. H. Portis, 2006: Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J. Geophys. Res., 111, D02114, doi:10.1029/2005JD006273.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones, 2010: Winter 2009–2010: A case study of an extreme Arctic Oscillation event. Geophys. Res. Lett., 37, L17707, doi:10.1029/2010GL044256.

    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., and J. C. Davenport, 1987: Rapid surface anticyclogenesis: Synoptic climatology and attendant large-scale circulation changes. Mon. Wea. Rev., 115, 822836, doi:10.1175/1520-0493(1987)115<0822:RSASCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1990: Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteor. Atmos. Phys., 44, 281292, doi:10.1007/BF01026822.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2012; ERA Interim, daily. European Centre for Medium-Range Weather Forecasts. Subset used: 1 November 1979–28 February 2011, accessed 1 July 2012. [Available online at http://apps.ecmwf.int/datasets/data/interim-full-daily/.]

  • Gong, D.-Y., and C.-H. Ho, 2004: Intra-seasonal variability of wintertime temperature over East Asia. Int. J. Climatol., 24, 131144, doi:10.1002/joc.1006.

    • Search Google Scholar
    • Export Citation
  • Hayasaki, M., S. Sugata, and H. L. Tanaka, 2006: Interannual variation of cold frontal activity in spring in Mongolia. J. Meteor. Soc. Japan, 84, 463475, doi:10.2151/jmsj.84.463.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1997: Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change, 36, 301326, doi:10.1023/A:1005314315270.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., and Y. Mochizuki, 2012: Mass-weighted isentropic zonal mean equatorward flow in the Northern Hemispheric winter. SOLA, 8, 115118, doi:10.2151/sola.2012-029.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., T. Shoji, Y. Kanno, M. Sawada, K. Takaya, and M. Ujiie, 2014: Isentropic analysis of polar cold air mass streams in the Northern Hemispheric winter. J. Atmos. Sci., 71, 22302243, doi:10.1175/JAS-D-13-058.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1989: The forcing and maintenance of global monsoonal circulations: An isentropic analysis. Adv. Geophys., 31, 43316, doi:10.1016/S0065-2687(08)60053-9.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, doi:10.1002/qj.620.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., 1996: Relationships between the intensity of cold-air outbreaks and the evolution of synoptic and planetary-scale features over North America. Mon. Wea. Rev., 124, 10671083, doi:10.1175/1520-0493(1996)124<1067:RBTIOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, D.-H., Y. Yao, and S. B. Feldstein, 2014: Regime transition of the North Atlantic Oscillation and the extreme cold event over Europe in January–February 2012. Mon. Wea. Rev., 142, 47354757, doi:10.1175/MWR-D-13-00234.1.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1950: The index cycle and its role in the general circulation. J. Meteor., 7, 130139, doi:10.1175/1520-0469(1950)007<0130:TICAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., 2014: Record-breaking winters and global climate change. Science, 344, 803804, doi:10.1126/science.1255147.

  • Pauluis, O., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 10751078, doi:10.1126/science.1159649.

    • Search Google Scholar
    • Export Citation
  • Ren, R.-C., and M. Cai, 2007: Meridional and vertical out-of-phase relationships of temperature anomalies associated with the Northern Annular Mode variability. Geophys. Res. Lett., 34, L07704, doi:10.1029/2006GL028729.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., and H. van Loon, 1979: The seesaw in winter temperatures between Greenland and northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes. Mon. Wea. Rev., 107, 509519, doi:10.1175/1520-0493(1979)107<0509:TSIWTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryoo, S.-B., W.-T. Kwon, and J.-G. Jhun, 2005: Surface and upper-level features associated with wintertime cold surge outbreaks in South Korea. Adv. Atmos. Sci., 22, 509524, doi:10.1007/BF02918484.

    • Search Google Scholar
    • Export Citation
  • Shoji, T., Y. Kanno, T. Iwasaki, and K. Takaya, 2014: An isentropic analysis of the temporal evolution of East Asian cold air outbreaks. J. Climate, 27, 93379348, doi:10.1175/JCLI-D-14-00307.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 2635.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 44234440, doi:10.1175/JAS3629.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, doi:10.1126/science.1058958.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, doi:10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2000: North Atlantic Oscillation/annular mode: Two paradigms—One phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791805, doi:10.1256/smsqj.56401.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., A. S. Phillips, D. H. Portis, and W. L. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948–99. J. Climate, 14, 26422658, doi:10.1175/1520-0442(2001)014<2642:ECOITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and L. O. Mearns, 2002: The influence of the North Atlantic–Arctic Oscillation on mean, variance, and extremes of temperature in the northeastern United States and Canada. J. Climate, 15, 35863600, doi:10.1175/1520-0442(2002)015<3586:TIOTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wexler, H., 1951: Anticyclones. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 621–628.

  • Wu, M.-C., and J. C.-L. Chan, 1995: Surface features of winter monsoon surges over south China. Mon. Wea. Rev., 123, 662680, doi:10.1175/1520-0493(1995)123<0662:SFOWMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, Y.-Y., R.-C. Ren, J.-G. Hu, and G.-X. Wu, 2014: A mass budget analysis on the interannual variability of the polar surface pressure in the winter season. J. Atmos. Sci., 71, 35393553, doi:10.1175/JAS-D-13-0365.1.

    • Search Google Scholar
    • Export Citation
  • Yu, Y.-Y., M. Cai, R.-C. Ren, and H. Van den Dool, 2015: Relationship between warm airmass transport into upper polar atmosphere and cold air outbreaks in winter. J. Atmos. Sci., 72, 349368, doi:10.1175/JAS-D-14-0111.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., C.-S. Shin, H. Van den Dool, and M. Cai, 2013: CFSv2 prediction skill of stratospheric temperature anomalies. Climate Dyn., 41, 22312249, doi:10.1007/s00382-013-1907-5.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 26052619, doi:10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 196 8
PDF Downloads 237 157 7

Dynamic Linkage between Cold Air Outbreaks and Intensity Variations of the Meridional Mass Circulation

View More View Less
  • 1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • | 2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, and Key Laboratory of Meteorological Disaster (KLME), Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida
Restricted access

Abstract

This study investigates the dynamical linkage between the meridional mass circulation and cold air outbreaks using the ERA-Interim data covering the period 1979–2011. It is found that the onset date of continental-scale cold air outbreaks coincides well with the peak time of stronger meridional mass circulation events, when the net mass transport across 60°N in the warm or cold air branch exceeds ~88 × 109 kg s−1. During weaker mass circulation events when the net mass transport across 60°N is below ~71.6 × 109 kg s−1, most areas of the midlatitudes are generally in mild conditions except the northern part of western Europe. Composite patterns of circulation anomalies during stronger mass circulation events greatly resemble that of the winter mean, with the two main routes of anomalous cold air outbreaks being along the climatological routes of polar cold air: namely, via East Asia and North America. The Siberian high shifts westward during stronger mass circulation events, opening up a third route of cold air outbreaks through eastern Europe, where lies the poleward warm air route in the winter-mean condition. The strengthening of the Icelandic low and Azores high during stronger mass circulation events acts to close off the climatological-mean cold air route via western Europe; this is responsible for the comparatively normal temperature there. The composite pattern for weaker mass circulation events is generally reversed, where the weakening of the Icelandic low and Azores high, corresponding to the negative phase of the North Atlantic Oscillation (NAO), leads to the reopening and strengthening of the equatorward cold air route through western Europe, which is responsible for the cold anomalies there.

Corresponding author address: Dr. Rongcai Ren, LASG, Institute of Atmospheric Physics, CAS, P.O. Box 9804, Beijing 100029, China. E-mail: rrc@lasg.iap.ac.cn

Abstract

This study investigates the dynamical linkage between the meridional mass circulation and cold air outbreaks using the ERA-Interim data covering the period 1979–2011. It is found that the onset date of continental-scale cold air outbreaks coincides well with the peak time of stronger meridional mass circulation events, when the net mass transport across 60°N in the warm or cold air branch exceeds ~88 × 109 kg s−1. During weaker mass circulation events when the net mass transport across 60°N is below ~71.6 × 109 kg s−1, most areas of the midlatitudes are generally in mild conditions except the northern part of western Europe. Composite patterns of circulation anomalies during stronger mass circulation events greatly resemble that of the winter mean, with the two main routes of anomalous cold air outbreaks being along the climatological routes of polar cold air: namely, via East Asia and North America. The Siberian high shifts westward during stronger mass circulation events, opening up a third route of cold air outbreaks through eastern Europe, where lies the poleward warm air route in the winter-mean condition. The strengthening of the Icelandic low and Azores high during stronger mass circulation events acts to close off the climatological-mean cold air route via western Europe; this is responsible for the comparatively normal temperature there. The composite pattern for weaker mass circulation events is generally reversed, where the weakening of the Icelandic low and Azores high, corresponding to the negative phase of the North Atlantic Oscillation (NAO), leads to the reopening and strengthening of the equatorward cold air route through western Europe, which is responsible for the cold anomalies there.

Corresponding author address: Dr. Rongcai Ren, LASG, Institute of Atmospheric Physics, CAS, P.O. Box 9804, Beijing 100029, China. E-mail: rrc@lasg.iap.ac.cn
Save