• Aller, J. Y., M. R. Kuznetsova, C. J. Jahns, and P. F. Kemp, 2005: The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J. Aerosol Sci., 36, 801812, doi:10.1016/j.jaerosci.2004.10.012.

    • Search Google Scholar
    • Export Citation
  • An, S., H. Sin, and M. DuBow, 2014: Modification of atmospheric sand-associated bacterial communities during Asian sandstorms in China and South Korea. Heredity, 114, 460–467, doi:10.1038/hdy.2014.102.

    • Search Google Scholar
    • Export Citation
  • Bauer, H., H. Giebl, R. Hitzenberger, A. Kasper‐Giebl, G. Reischl, F. Zibuschka, and H. Puxbaum, 2003: Airborne bacteria as cloud condensation nuclei. J. Geophys. Res.,108, 4658, doi:10.1029/2003JD003545.

  • Bishop, J. K., R. E. Davis, and J. T. Sherman, 2002: Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science, 298, 817821, doi:10.1126/science.1074961.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1983: The production, distribution, and bacterial enrichment of the sea-salt aerosol. Air-Sea Exchange of Gases and Particles, P. S. Liss and W. G. N. Slinn, Eds., NATO ASI Series C: Mathematical and Physical Sciences, Vol. l08, Springer Netherlands, 407–454.

  • Bowers, R. M., S. McLetchie, R. Knight, and N. Fierer, 2011: Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J., 5, 601612, doi:10.1038/ismej.2010.167.

    • Search Google Scholar
    • Export Citation
  • Burrows, S., W. Elbert, M. Lawrence, and U. Pöschl, 2009: Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys., 9, 92639280, doi:10.5194/acp-9-9263-2009.

    • Search Google Scholar
    • Export Citation
  • Chang, C. W., and F. C. Chou, 2011: Methodologies for quantifying culturable, viable, and total Legionella pneumophila in indoor air. Indoor Air, 21, 291299, doi:10.1111/j.1600-0668.2010.00701.x.

    • Search Google Scholar
    • Export Citation
  • Cho, B. C., and C. Y. Hwang, 2011: Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea). FEMS Microbiol. Ecol., 76, 327341, doi:10.1111/j.1574-6941.2011.01053.x.

    • Search Google Scholar
    • Export Citation
  • DeSantis, T. Z., and Coauthors, 2006: Greengenes, the 16S rRNA gene database and tools. The Greengenes Database Consortium, accessed 1 June 2013. [Available online at http://greengenes.lbl.gov/cgi-bin/nph-index.cgi.]

  • Després, V. R., and Coauthors, 2012: Primary biological aerosol particles in the atmosphere: A review. Tellus, 64B, 15 598, doi:10.3402/tellusb.v64i0.15598.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. Rolph, 2003: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model. NOAA Air Resources Laboratory, Silver Springs, MD, accessed 3 December 2014. [Available online at http://www.arl.noaa.gov/ready/hysplit4.html.]

  • Fahlgren, C., Å. Hagström, D. Nilsson, and U. L. Zweifel, 2010: Annual variations in the diversity, viability, and origin of airborne bacteria. Appl. Environ. Microbiol., 76, 30153025, doi:10.1128/AEM.02092-09.

    • Search Google Scholar
    • Export Citation
  • Gershey, R. M., 1983: Characterization of seawater organic matter carried by bubble-generated aerosols. Limnol. Oceanogr., 28, 309319, doi:10.4319/lo.1983.28.2.0309.

    • Search Google Scholar
    • Export Citation
  • Griffin, D. W., C. A. Kellogg, V. H. Garrison, J. T. Lisle, T. C. Borden, and E. A. Shinn, 2003: Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia, 19, 143157, doi:10.1023/B:AERO.0000006530.32845.8d.

    • Search Google Scholar
    • Export Citation
  • Hervàs, A., L. Camarero, I. Reche, and E. O. Casamayor, 2009: Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ. Microbiol., 11, 16121623, doi:10.1111/j.1462-2920.2009.01926.x.

    • Search Google Scholar
    • Export Citation
  • Hospodsky, D., J. Qian, W. W. Nazaroff, N. Yamamoto, K. Bibby, H. Rismani-Yazdi, and J. Peccia, 2012: Human occupancy as a source of indoor airborne bacteria. PLoS One, 7, e34867, doi:10.1371/journal.pone.0034867.

    • Search Google Scholar
    • Export Citation
  • Hua, N.-P., F. Kobayashi, Y. Iwasaka, G.-Y. Shi, and T. Naganuma, 2007: Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia, 23, 291298, doi:10.1007/s10453-007-9076-9.

    • Search Google Scholar
    • Export Citation
  • Hultin, K. A., R. Krejci, J. Pinhassi, L. Gomez-Consarnau, E. M. Mårtensson, Å. Hagström, and E. D. Nilsson, 2011: Aerosol and bacterial emissions from Baltic Seawater. Atmos. Res., 99, 114, doi:10.1016/j.atmosres.2010.08.018.

    • Search Google Scholar
    • Export Citation
  • Iwamoto, Y., K. Yumimoto, M. Toratani, A. Tsuda, K. Miura, I. Uno, and M. Uematsu, 2011: Biogeochemical implications of increased mineral particle concentrations in surface waters of the northwestern North Pacific during an Asian dust event. Geophys. Res. Lett., 38, L01604, doi:10.1029/2010GL045906.

    • Search Google Scholar
    • Export Citation
  • Jeon, E. M., H. J. Kim, K. Jung, J. H. Kim, M. Y. Kim, Y. P. Kim, and J.-O. Ka, 2011: Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmos. Environ., 45, 43134321, doi:10.1016/j.atmosenv.2010.11.054.

    • Search Google Scholar
    • Export Citation
  • Kedjarune, U., B. Kukiattrakoon, B. Yapong, S. Chowanadisai, and P. Leggat, 2000: Bacterial aerosols in the dental clinic: Effect of time, position and type of treatment. Int. Dent. J., 50, 103107, doi:10.1002/j.1875-595X.2000.tb00807.x.

    • Search Google Scholar
    • Export Citation
  • Kellogg, C. A., and D. W. Griffin, 2006: Aerobiology and the global transport of desert dust. Trends Ecol. Evol., 21, 638644, doi:10.1016/j.tree.2006.07.004.

    • Search Google Scholar
    • Export Citation
  • Leck, C., and E. K. Bigg, 2008: Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol. Tellus, 60B, 118126, doi:10.3402/tellusb.v60i1.16906.

    • Search Google Scholar
    • Export Citation
  • Letunic, I., and P. Bork, 2007: Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics, 23, 127128, doi:10.1093/bioinformatics/btl529.

    • Search Google Scholar
    • Export Citation
  • Leung, M. H., D. Wilkins, E. K. Li, F. K. Kong, and P. K. Lee, 2014: Indoor-air microbiome in an urban subway network: Diversity and dynamics. Appl. Environ. Microbiol., 80, 67606770, doi:10.1128/AEM.02244-14.

    • Search Google Scholar
    • Export Citation
  • Li, M., J. Qi, H. Zhang, S. Huang, L. Li, and D. Gao, 2011: Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. Sci. Total Environ., 409, 38123819, doi:10.1016/j.scitotenv.2011.06.001.

    • Search Google Scholar
    • Export Citation
  • Ludwig, W., and K. Schleifer, 1994: Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol. Rev., 15, 155173, doi:10.1111/j.1574-6976.1994.tb00132.x.

    • Search Google Scholar
    • Export Citation
  • Ma, C.-J., S. Tohno, M. Kasahara, and S. Hayakawa, 2004: Properties of individual Asian dust storm particles collected at Kosan, Korea during ACE-Asia. Atmos. Environ., 38, 11331143, doi:10.1016/j.atmosenv.2003.11.020.

    • Search Google Scholar
    • Export Citation
  • Maki, T., and Coauthors, 2010: Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City. Sci. Total Environ., 408, 45564562, doi:10.1016/j.scitotenv.2010.04.002.

    • Search Google Scholar
    • Export Citation
  • Maron, P.-A., D. P. Lejon, E. Carvalho, K. Bizet, P. Lemanceau, L. Ranjard, and C. Mougel, 2005: Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmos. Environ., 39, 36873695, doi:10.1016/j.atmosenv.2005.03.002.

    • Search Google Scholar
    • Export Citation
  • Merrill, L., J. Dunbar, J. Richardson, and C. R. Kuske, 2006: Composition of Bacillus species in aerosols from 11 U.S. cities. J. Forensic Sci., 51, 559565, doi:10.1111/j.1556-4029.2006.00132.x.

    • Search Google Scholar
    • Export Citation
  • Morris, C., D. Sands, M. Bardin, R. Jaenicke, B. Vogel, C. Leyronas, P. Ariya, and R. Psenner, 2011: Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences, 8, 1725, doi:10.5194/bg-8-17-2011.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., and Coauthors, 2004: Biogenically driven organic contribution to marine aerosol. Nature, 431, 676680, doi:10.1038/nature02959.

    • Search Google Scholar
    • Export Citation
  • Peter, H., P. Hörtnagl, I. Reche, and R. Sommaruga, 2014: Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps. Environ. Microbiol. Rep., 6, 618624, doi:10.1111/1758-2229.12175.

    • Search Google Scholar
    • Export Citation
  • Polymenakou, P. N., M. Mandalakis, E. G. Stephanou, and A. Tselepides, 2008: Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environ. Health Perspect., 116, 292–296, doi:10.1289/ehp.10684.

    • Search Google Scholar
    • Export Citation
  • Pósfai, M., J. Li, J. R. Anderson, and P. R. Buseck, 2003: Aerosol bacteria over the Southern Ocean during ACE-1. Atmos. Res., 66, 231240, doi:10.1016/S0169-8095(03)00039-5.

    • Search Google Scholar
    • Export Citation
  • Sayers, E. W., and Coauthors, 2011: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 39, D38D51, doi:10.1093/nar/gkq1172.

    • Search Google Scholar
    • Export Citation
  • Schloss, P. D., and Coauthors, 2009: Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol., 75, 75377541, doi:10.1128/AEM.01541-09.

    • Search Google Scholar
    • Export Citation
  • Schloss, P. D., D. Gevers, and S. L. Westcott, 2011: Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One, 6, e27310, doi:10.1371/journal.pone.0027310.

    • Search Google Scholar
    • Export Citation
  • Smith, D. J., D. A. Jaffe, M. N. Birmele, D. W. Griffin, A. C. Schuerger, J. Hee, and M. S. Roberts, 2012: Free tropospheric transport of microorganisms from Asia to North America. Microb. Ecol., 64, 973985, doi:10.1007/s00248-012-0088-9.

    • Search Google Scholar
    • Export Citation
  • Smith, D. J., H. J. Timonen, D. A. Jaffe, D. W. Griffin, M. N. Birmele, K. D. Perry, P. D. Ward, and M. S. Roberts, 2013: Intercontinental dispersal of bacteria and archaea by transpacific winds. Appl. Environ. Microbiol., 79, 11341139, doi:10.1128/AEM.03029-12.

    • Search Google Scholar
    • Export Citation
  • Sogin, M. L., H. G. Morrison, J. A. Huber, D. M. Welch, S. M. Huse, P. R. Neal, J. M. Arrieta, and G. J. Herndl, 2006: Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proc. Natl. Acad. Sci. USA, 103, 12 11512 120, doi:10.1073/pnas.0605127103.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and P. A. Ariya, 2006: Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmos. Environ., 40, 795820, doi:10.1016/j.atmosenv.2005.05.052.

    • Search Google Scholar
    • Export Citation
  • Tamura, K., J. Dudley, M. Nei, and S. Kumar, 2007: MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24, 15691599, doi:10.1093/molbev/msm092.

    • Search Google Scholar
    • Export Citation
  • Tan, S.-C., X. Yao, H.-W. Gao, G.-Y. Shi, and X. Yue, 2013: Variability in the correlation between Asian dust storms and chlorophyll a concentration from the north to equatorial Pacific. PLoS One, 8, e57656, doi:10.1371/journal.pone.0057656.

    • Search Google Scholar
    • Export Citation
  • Thompson, J. R., L. A. Marcelino, and M. F. Polz, 2005: Diversity, sources, and detection of human bacterial pathogens in the marine environment. Oceans and Health: Pathogens in the Marine Environment, S. Belkin and R. Colwell, Eds., 29–68, doi:10.1007/0-387-23709-7_2.

  • Tsai, Y.-L., and B. H. Olson, 1991: Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol., 57, 10701074.

    • Search Google Scholar
    • Export Citation
  • Uno, I., and Coauthors, 2009: Asian dust transported one full circuit around the globe. Nat. Geosci., 2, 557560, doi:10.1038/ngeo583.

    • Search Google Scholar
    • Export Citation
  • Williamson, A., and H. Gotaas, 1942: Aerosol sterilization of air-borne bacteria. Amer. Ind. Hyg. Assoc. Quart., 3, 4045, doi:10.1080/00968204209343817.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., C. Lee, J. Kim, and S. Hwang, 2005: Group‐specific primer and probe sets to detect methanogenic communities using quantitative real‐time polymerase chain reaction. Biotechnol. Bioeng., 89, 670679, doi:10.1002/bit.20347.

    • Search Google Scholar
    • Export Citation
  • Yukimura, K., R. Nakai, S. Kohshima, J. Uetake, H. Kanda, and T. Naganuma, 2009: Spore-forming halophilic bacteria isolated from Arctic terrains: Implications for long-range transportation of microorganisms. Polar Sci., 3, 163169, doi:10.1016/j.polar.2009.07.002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 619 473 27
PDF Downloads 306 168 8

Bacterial Communities in Marine Aerosols Revealed by 454 Pyrosequencing of the 16S rRNA Gene

View More View Less
  • 1 Division of Environmental Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
  • | 2 Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian, China
  • | 3 State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, China
Restricted access

Abstract

Although bacteria are an important biological component of aerosol particles, studies of bacterial communities in remote marine aerosol are largely lacking. In this study, aerosol samples were collected over the western Pacific Ocean, the northern Pacific Ocean, the Arctic Ocean, and the Norwegian Sea during the Fifth Chinese National Arctic Research Expedition (CHINARE 5). The diversity and structure of aerosol bacterial communities, based on 454 pyrosequencing, were explored in these samples. The bacterial community in the aerosols collected over the Pacific Ocean was more diverse than over the Norwegian Sea. Both temporal and spatial variations in aerosol bacterial communities were observed based on phylogenetic analysis. These results suggest that the source of air masses shape bacterial communities in aerosol particles over remote marine regions. Aerosols are clearly important for long-range transport of bacteria. Since potential human pathogens (e.g., Streptococcus sp.) were retrieved in this study, further investigation is needed to evaluate the potential for their long-distance migration via aerosol.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0008.s1.

Corresponding author address: Liqi Chen, Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Rm. 501, Third Institute of Oceanography, State Oceanic Administration, Xiamen Daxue Road, Xiamen, Fujian 361005, China. E-mail: chenliqi@tio.org.cn; ruizhang@xmu.edu.cn

Abstract

Although bacteria are an important biological component of aerosol particles, studies of bacterial communities in remote marine aerosol are largely lacking. In this study, aerosol samples were collected over the western Pacific Ocean, the northern Pacific Ocean, the Arctic Ocean, and the Norwegian Sea during the Fifth Chinese National Arctic Research Expedition (CHINARE 5). The diversity and structure of aerosol bacterial communities, based on 454 pyrosequencing, were explored in these samples. The bacterial community in the aerosols collected over the Pacific Ocean was more diverse than over the Norwegian Sea. Both temporal and spatial variations in aerosol bacterial communities were observed based on phylogenetic analysis. These results suggest that the source of air masses shape bacterial communities in aerosol particles over remote marine regions. Aerosols are clearly important for long-range transport of bacteria. Since potential human pathogens (e.g., Streptococcus sp.) were retrieved in this study, further investigation is needed to evaluate the potential for their long-distance migration via aerosol.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAS-D-15-0008.s1.

Corresponding author address: Liqi Chen, Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Rm. 501, Third Institute of Oceanography, State Oceanic Administration, Xiamen Daxue Road, Xiamen, Fujian 361005, China. E-mail: chenliqi@tio.org.cn; ruizhang@xmu.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.39 MB)
Save