• Abarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 32163230, doi:10.1175/JAS-D-12-0318.1.

    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., and M. T. Montgomery, 2015: Departures from axisymmetric balance dynamics during secondary eyewall formation. J. Atmos. Sci., 72, 8287, doi:10.1175/JAS-D-14-0151.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. D., 2005: Ludwig Prandtl’s boundary layer. Phys. Today, 58, 4260, doi:10.1063/1.2169443.

  • Bryan, G. H., R. Rotunno, and Y. Chen, 2010: The effects of turbulence on hurricane intensity. 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 8C.7. [Available online at https://ams.confex.com/ams/29Hurricanes/techprogram/paper_167282.htm.]

  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical-cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, doi:10.1002/qj.502.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146162, doi:10.1175/JAS-D-12-062.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, doi:10.1175/JAS-D-14-0097.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., D.-L. Zhang, J. Carton, and R. Atlas, 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885901, doi:10.1175/WAF-D-11-00001.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, doi:10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv.,5, 19–60.

  • Eliassen, A., 1962: On the vertical circulation in frontal zones. Geofys. Publ., 24 (4), 147–160.

  • Eliassen, A., 1971: On the Ekman layer in a circular vortex. J. Meteor. Soc. Japan, 49, 784789.

  • Eliassen, A., and M. Lystad, 1977: The Ekman layer of a circular vortex: A numerical and theoretical study. Geophys. Norv., 31, 116.

  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179196, doi:10.1146/annurev.fl.23.010191.001143.

  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Greenspan, H. P., and L. N. Howard, 1963: On a time-dependent motion of a rotating fluid. J. Fluid Mech., 17, 385404, doi:10.1017/S0022112063001415.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006a: Observed boundary-layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 21692193, doi:10.1175/JAS3745.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006b: Observed boundary-layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 21942211, doi:10.1175/JAS3746.1.

    • Search Google Scholar
    • Export Citation
  • Kowch, R., and K. Emanuel, 2015: Are special processes at work in the rapid intensification of tropical cyclones? Mon. Wea. Rev., 143, 878882, doi:10.1175/MWR-D-14-00360.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1971: The boundary layer dynamics of symmetric vortices. Ph.D. thesis, Harvard University, 89 pp.

  • McWilliams, J. C., L. P. Graves, and M. T. Montgomery, 2003: A formal theory for vortex Rossby waves and vortex evolution. Geophys. Astrophys. Fluid Dyn., 97, 275309, doi:10.1080/0309192031000108698.

    • Search Google Scholar
    • Export Citation
  • Menelaou, K., M. K. Lau, and Y. Martinez, 2014: Some aspects of the problem of secondary eyewall formation in idealized three-dimensional nonlinear simulations. J. Adv. Model. Earth Syst., 6, 491512, doi:10.1002/2014MS000316.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and L. J. Shapiro, 2002: Balanced contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 18661881, doi:10.1175/1520-0493(2002)130<1866:BCTTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2011: Tropical cyclone formation: Theory and idealized modelling. Proc. Seventh WMO Int. Workshop on Tropical Cyclones, La Réunion, France, World Meteorological Organization, 23 pp. [Available online at http://www.wmo.int/pages/prog/arep/wwrp/tmr/otherfileformats/documents/2_1.pdf.]

  • Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 3766. [Available online at http://www.bom.gov.au/amoj/docs/2014/montgomery_hres.pdf.]

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., H. D. Snell, and Z. Yang, 2001: Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci., 58, 421435, doi:10.1175/1520-0469(2001)058<0421:ASDOHL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nichols, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., S. V. Nguyen, R. K. Smith, and J. Persing, 2009: Do tropical cyclones intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135, 16971714, doi:10.1002/qj.459.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., S. F. Abarca, R. K. Smith, C.-C. Wu, and Y.-H. Huang, 2014a: Comments on “How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?” J. Atmos. Sci., 71, 46824691, doi:10.1175/JAS-D-13-0286.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. Persing, and R. K. Smith, 2014b: Putting to rest WISHE-ful misconceptions for tropical cyclone intensification. J. Adv. Model. Earth Syst., 7, 92109, doi:10.1002/2014MS000362.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. A. Zhang, and R. K. Smith, 2014c: An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 140, 21322146, doi:10.1002/qj.2283.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 29893020, doi:10.1175/1520-0469(2002)059<2989:NTDPTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 27172745, doi:10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 1–36.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, doi:10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1997: Footnotes to “conceptual evolution.” Extended Abstracts, 22nd Conf. on Hurricanes and Tropical Meteorology, Ft. Collins, CO, Amer. Meteor. Soc., 1318.

  • Persing, J., M. T. Montgomery, J. McWilliams, and R. K. Smith, 2013: Asymmetric and axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 29912 341, doi:10.5194/acp-13-12299-2013.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 2001: Motions of fluids with very little viscosity. Early Developments of Modern Aerodynamics, J. A. K. Ackroyd, B. P. Axcell, and A. I. Ruban, Eds., Butterworth Heinemann, 42–48.

  • Reasor, P. D., and M. T. Montgomery, 2015: Evaluation of a heuristic model for tropical cyclone resilience. J. Atmos. Sci., 72, 1765–1782, doi:10.1175/JAS-D-14-0318.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, doi:10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., and M. T. Montgomery, 2011: Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear. Atmos. Chem. Phys., 11, 93959414, doi:10.5194/acp-11-9395-2011.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327346, doi:10.5194/acp-13-327-2013.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 2014: Secondary circulations in rotating-flow boundary layers. Aust. Meteor. Oceanogr. J., 64, 2735. [Available online at http://www.bom.gov.au/amoj/docs/2014/rotunno_hres.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, and J. P. Kossin, 2008: Some dynamical aspects of tropical cyclone concentric eyewalls. Quart. J. Roy. Meteor. Soc., 134, 583593, doi:10.1002/qj.237.

    • Search Google Scholar
    • Export Citation
  • Sanger, N. T., M. T. Montgomery, R. K. Smith, and M. M. Bell, 2014: An observational study of tropical cyclone spinup in Supertyphoon Jangmi from 24 to 27 September. Mon. Wea. Rev., 142, 3–28, doi:10.1175/MWR-D-12-00306.1.

    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. Roy. Soc. London, 234A,346362, doi:10.1098/rspa.1956.0039.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., C. M. Rozoff, J. L. Vigh, B. D. McNoldy, and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133, 595605, doi:10.1002/qj.49.

    • Search Google Scholar
    • Export Citation
  • Schwendike, J., and J. D. Kepert, 2008: The boundary layer winds in Hurricane Danielle (1998) and Isabel (2003). Mon. Wea. Rev., 136, 31683192, doi:10.1175/2007MWR2296.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50, 33223335, doi:10.1175/1520-0469(1993)050<3322:ATDBTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1968: The surface boundary layer of a hurricane. Tellus, 20, 473484, doi:10.1111/j.2153-3490.1968.tb00388.x.

  • Smith, R. K., and S. Vogl, 2008: A simple model of the hurricane boundary layer revisited. Quart. J. Roy. Meteor. Soc., 134, 337351, doi:10.1002/qj.216.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 16651670, doi:10.1002/qj.679.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and S. Vogl, 2008: A critique of Emanuel’s hurricane model and potential intensity theory. Quart. J. Roy. Meteor. Soc., 134, 551561, doi:10.1002/qj.241.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and S. V. Nguyen, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 13211335, doi:10.1002/qj.428.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and J. Persing, 2014: On steady-state tropical cyclones. Quart. J. Roy. Meteor. Soc., 140, 26382649, doi:10.1002/qj.2329.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., G. Kilroy, and M. T. Montgomery, 2015: Why do model tropical cyclones intensify more rapidly at low latitudes? J. Atmos. Sci., 72, 1783–1804, doi:10.1175/JAS-D-14-0044.1.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 12831306, doi:10.1175/JAS-D-14-0261.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. A. Emanuel, 2010: Midlevel ventilation's constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, doi:10.1175/2010JAS3318.1.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Vogl, S., and R. K. Smith, 2009: Limitations of a linear model for the hurricane boundary layer. Quart. J. Roy. Meteor. Soc., 135, 839850, doi:10.1002/qj.390.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 31733183, doi:10.1029/JC084iC06p03173.

  • Willoughby, H. E., 1995: Mature structure and evolution. WMO/TD-693, 289 pp.

  • Wong, M. L. M., and J. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 18591876, doi:10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and K. A. Emanuel, 1991: An improved model of the equatorial atmosphere and its coupling with the stratosphere. J. Atmos. Sci., 48, 377389, doi:10.1175/1520-0469(1991)048<0377:AIMOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett.,39, L02806, doi:10.1029/2011GL050578.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 498 261 24
PDF Downloads 411 200 19

Toward Clarity on Understanding Tropical Cyclone Intensification

View More View Less
  • 1 Meteorological Institute, Ludwig-Maximilians University of Munich, Munich, Germany
  • | 2 Department of Meteorology, Naval Postgraduate School, Monterey, California
Restricted access

Abstract

The authors review an emerging paradigm of tropical cyclone intensification in the context of the prototype intensification problem, which relates to the spinup of a preexisting vortex near tropical storm strength in a quiescent environment. In addition, the authors review briefly what is known about tropical cyclone intensification in the presence of vertical wind shear. The authors go on to examine two recent lines of research that seem to offer very different views to understanding the intensification problem. The first of these proposes a mechanism to explain rapid intensification in terms of surface pressure falls in association with upper-level warming accompanying outbreaks of deep convection. The second line of research explores the relationship between the contraction of the radius of maximum tangential wind and intensification in the classical axisymmetric convective ring model, albeit in an unbalanced framework. The authors challenge a finding of the second line of research that appears to cast doubt on a recently suggested mechanism for the spinup of maximum tangential wind speed in the boundary layer—a feature seen in observations. In doing so, the authors recommend some minimum requirements for a satisfactory explanation of tropical cyclone intensification.

Corresponding author address: Prof. Roger K. Smith, Meteorological Institute, Ludwig-Maximilians University of Munich, Theresienstr. 37, 80333 Munich, Germany. E-mail: roger.smith@lmu.de

Abstract

The authors review an emerging paradigm of tropical cyclone intensification in the context of the prototype intensification problem, which relates to the spinup of a preexisting vortex near tropical storm strength in a quiescent environment. In addition, the authors review briefly what is known about tropical cyclone intensification in the presence of vertical wind shear. The authors go on to examine two recent lines of research that seem to offer very different views to understanding the intensification problem. The first of these proposes a mechanism to explain rapid intensification in terms of surface pressure falls in association with upper-level warming accompanying outbreaks of deep convection. The second line of research explores the relationship between the contraction of the radius of maximum tangential wind and intensification in the classical axisymmetric convective ring model, albeit in an unbalanced framework. The authors challenge a finding of the second line of research that appears to cast doubt on a recently suggested mechanism for the spinup of maximum tangential wind speed in the boundary layer—a feature seen in observations. In doing so, the authors recommend some minimum requirements for a satisfactory explanation of tropical cyclone intensification.

Corresponding author address: Prof. Roger K. Smith, Meteorological Institute, Ludwig-Maximilians University of Munich, Theresienstr. 37, 80333 Munich, Germany. E-mail: roger.smith@lmu.de
Save