• Abdul-Razzak, H., S. J. Ghan, and C. Rivera-Carpio, 1998: A parameterization of aerosol activation: 1. Single aerosol type. J. Geophys. Res., 103, 61236131, doi:10.1029/97JD03735.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 2005: An Introduction to Fluid Dynamics. 6th ed. Cambridge University Press, 800 pp.

  • Blevins, R. D., 1992: Applied Fluid Dynamics Handbook. Krieger Publishing Company, 558 pp.

  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, doi:10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., R. Bleck, and D. A. Morris, 1972: Hail growth by stochastic collection in a cumulus model. J. Atmos. Sci., 29, 135155, doi:10.1175/1520-0469(1972)029<0135:HGBSCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, doi:10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2011: The influence of the cloud shell on tracer budget measurements of LES cloud entrainment. J. Atmos. Sci., 68, 29092920, doi:10.1175/2011JAS3658.1.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., A. P. Siebesma, H. J. J. Jonker, and Y. de Voogd, 2012: Parameterization of the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev., 140, 24242436, doi:10.1175/MWR-D-11-00277.1.

    • Search Google Scholar
    • Export Citation
  • Fovell, R., D. Durran, and J. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 14271442, doi:10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Glenn, I. B., and S. K. Krueger, 2014: Downdrafts in the near cloud environment of deep convective updrafts. J. Adv. Model. Earth Syst.,6, 1–8, doi:10.1002/2013MS000261.

  • Grosvenor, D., T. Choularton, H. Coe, and G. Held, 2007: A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations. Atmos. Chem. Phys., 7, 49775002, doi:10.5194/acp-7-4977-2007.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. J. J. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018, doi:10.1175/2007JAS2322.1.

    • Search Google Scholar
    • Export Citation
  • Hill, M. J. M., 1894: On a spherical vortex. Philos. Trans. Roy. Soc. London, A185, 213245, doi:10.1098/rsta.1894.0006.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertically velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621640, doi:10.1175/1520-0469(1989)046<0621:VVCOOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321, doi:10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499515, doi:10.1175/BAMS-D-11-00062.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and W. A. Cooper, 1990: Performance of some airborne thermometers in clouds. J. Atmos. Oceanic Technol., 7, 480494, doi:10.1175/1520-0426(1990)007<0480:POSATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levine, J., 1959: Spherical vortex theory of bubble-like motion in cumulus clouds. J. Meteor., 16, 653662, doi:10.1175/1520-0469(1959)016<0653:SVTOBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. Zipser, and M. Lemone, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 31833193, doi:10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., 1974: Turbulent vortex rings. J. Fluid Mech., 64, 227240, doi:10.1017/S0022112074002370.

  • Nie, J., and Z. Kuang, 2012: Responses of shallow cumulus convection to large-scale temperature and moisture perturbations: A comparison of large-eddy simulations and a convective parameterization based on stochastically entraining parcels. J. Atmos. Sci., 69, 19361956, doi:10.1175/JAS-D-11-0279.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, O., 1876: On the resistance encountered by vortex rings, and the relation between the vortex rings and the streamlines of a disc. Nature, 14, 477479.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2008: The dry-entropy budget of a moist atmosphere. J. Atmos. Sci., 65, 37793799, doi:10.1175/2008JAS2679.1.

  • Romps, D. M., 2011: Response of tropical precipitation to global warming. J. Atmos. Sci., 68, 123138, doi:10.1175/2010JAS3542.1.

  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484, doi:10.1175/2009JAS3184.1.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari, 2014: Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851854, doi:10.1126/science.1259100.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernandez-Deckers, M. Colin, and F. Robinson, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, doi:10.1175/JAS-D-12-0220.1.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2007: The thermodynamic structure atop a penetrating convective thunderstorm. Atmos. Res., 83, 254262, doi:10.1016/j.atmosres.2005.08.010.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and M. Zhang, 2014: Vertical velocity in shallow convection for different plume types. J. Adv. Model. Earth Syst., 6, 478489, doi:10.1002/2014MS000318.

    • Search Google Scholar
    • Export Citation
  • Wei, D., A. M. Blyth, and D. J. Raymond, 1998: Buoyancy of convective clouds in TOGA COARE. J. Atmos. Sci., 55, 33813391, doi:10.1175/1520-0469(1998)055<3381:BOCCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 404 204 15
PDF Downloads 300 149 10

Sticky Thermals: Evidence for a Dominant Balance between Buoyancy and Drag in Cloud Updrafts

View More View Less
  • 1 Department of Earth and Planetary Science, University of California, Berkeley, and Berkeley Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
Restricted access

Abstract

The vertical velocities of convective clouds are of great practical interest because of their influence on many phenomena, including severe weather and stratospheric moistening. However, the magnitudes of forces giving rise to these vertical velocities are poorly understood, and the dominant balance is in dispute. Here, an algorithm is used to extract thousands of cloud thermals from a large-eddy simulation of deep and tropical maritime convection. Using a streamfunction to define natural boundaries for these thermals, the dominant balance in the vertical momentum equation is revealed. Cloud thermals rise with a nearly constant speed determined by their buoyancy and the standard drag law with a drag coefficient of 0.6. Contrary to suggestions that cloud thermals might be slippery, with a dominant balance between buoyancy and acceleration, cloud thermals are found here to be sticky, with a dominant balance between buoyancy and drag.

Corresponding author address: David M. Romps, Department of Earth and Planetary Science, University of California, Berkeley, 377 McCone Hall, Berkeley, CA 94720. E-mail: romps@berkeley.edu

Abstract

The vertical velocities of convective clouds are of great practical interest because of their influence on many phenomena, including severe weather and stratospheric moistening. However, the magnitudes of forces giving rise to these vertical velocities are poorly understood, and the dominant balance is in dispute. Here, an algorithm is used to extract thousands of cloud thermals from a large-eddy simulation of deep and tropical maritime convection. Using a streamfunction to define natural boundaries for these thermals, the dominant balance in the vertical momentum equation is revealed. Cloud thermals rise with a nearly constant speed determined by their buoyancy and the standard drag law with a drag coefficient of 0.6. Contrary to suggestions that cloud thermals might be slippery, with a dominant balance between buoyancy and acceleration, cloud thermals are found here to be sticky, with a dominant balance between buoyancy and drag.

Corresponding author address: David M. Romps, Department of Earth and Planetary Science, University of California, Berkeley, 377 McCone Hall, Berkeley, CA 94720. E-mail: romps@berkeley.edu
Save