Effect of Aerosols on Freezing Drops, Hail, and Precipitation in a Midlatitude Storm

Eyal Ilotoviz Department of Atmospheric Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Eyal Ilotoviz in
Current site
Google Scholar
PubMed
Close
,
Alexander P. Khain Department of Atmospheric Sciences, Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Alexander P. Khain in
Current site
Google Scholar
PubMed
Close
,
Nir Benmoshe NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Nir Benmoshe in
Current site
Google Scholar
PubMed
Close
,
Vaughan T. J. Phillips Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden

Search for other papers by Vaughan T. J. Phillips in
Current site
Google Scholar
PubMed
Close
, and
Alexander V. Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A midlatitude hail storm was simulated using a new version of the spectral bin microphysics Hebrew University Cloud Model (HUCM) with a detailed description of time-dependent melting and freezing. In addition to size distributions of drops, plate-, columnar-, and branch-type ice crystals, snow, graupel, and hail, new distributions for freezing drops as well as for liquid water mass within precipitating ice particles were implemented to describe time-dependent freezing and wet growth of hail, graupel, and freezing drops.

Simulations carried out using different aerosol loadings show that an increase in aerosol loading leads to a decrease in the total mass of hail but also to a substantial increase in the maximum size of hailstones. Cumulative rain strongly increases with an increase in aerosol concentration from 100 to about 1000 cm−3. At higher cloud condensation nuclei (CCN) concentrations, the sensitivity of hailstones’ size and surface precipitation to aerosols decreases. The physical mechanism of these effects was analyzed. It was shown that the change in aerosol concentration leads to a change in the major mechanisms of hail formation and growth. The main effect of the increase in the aerosol concentration is the increase in the supercooled cloud water content. Accordingly, at high aerosol concentration, the hail grows largely by accretion of cloud droplets in the course of recycling in the cloud updraft zone. The main mechanism of hail formation in the case of low aerosol concentration is freezing of raindrops.

Corresponding author address: Prof. Alexander Khain, Department of Atmospheric Sciences, Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel. E-mail: alexander.khain@mail.huji.ac.il

Denotes Chemistry/Aerosol content

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Abstract

A midlatitude hail storm was simulated using a new version of the spectral bin microphysics Hebrew University Cloud Model (HUCM) with a detailed description of time-dependent melting and freezing. In addition to size distributions of drops, plate-, columnar-, and branch-type ice crystals, snow, graupel, and hail, new distributions for freezing drops as well as for liquid water mass within precipitating ice particles were implemented to describe time-dependent freezing and wet growth of hail, graupel, and freezing drops.

Simulations carried out using different aerosol loadings show that an increase in aerosol loading leads to a decrease in the total mass of hail but also to a substantial increase in the maximum size of hailstones. Cumulative rain strongly increases with an increase in aerosol concentration from 100 to about 1000 cm−3. At higher cloud condensation nuclei (CCN) concentrations, the sensitivity of hailstones’ size and surface precipitation to aerosols decreases. The physical mechanism of these effects was analyzed. It was shown that the change in aerosol concentration leads to a change in the major mechanisms of hail formation and growth. The main effect of the increase in the aerosol concentration is the increase in the supercooled cloud water content. Accordingly, at high aerosol concentration, the hail grows largely by accretion of cloud droplets in the course of recycling in the cloud updraft zone. The main mechanism of hail formation in the case of low aerosol concentration is freezing of raindrops.

Corresponding author address: Prof. Alexander Khain, Department of Atmospheric Sciences, Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel. E-mail: alexander.khain@mail.huji.ac.il

Denotes Chemistry/Aerosol content

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Save
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, doi:10.1126/science.1092779.

    • Search Google Scholar
    • Export Citation
  • Benmoshe, N., M. Pinsky, A. Pokrovsky, and A. Khain, 2012: Turbulent effects on the microphysics and initiation of warm rain in deep convective clouds: 2-D simulations by a spectral mixed-phase microphysics cloud model. J. Geophys. Res., 117, D06220, doi:10.1029/2011JD016603.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, doi:10.1002/qj.49707934207.

    • Search Google Scholar
    • Export Citation
  • Bott, A., 1998: A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 22842293, doi:10.1175/1520-0469(1998)055<2284:AFMFTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499533, doi:10.1002/qj.49710243303.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and M. English, 1983: Relationship between hailstone concentration and size. J. Atmos. Sci., 40, 204213, doi:10.1175/1520-0469(1983)040<0204:ARBHCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., M. English, and R. Wong, 1985: Hailstone size distributions and their relationship to storm thermodynamics. J. Climate Appl. Meteor., 24, 10591067, doi:10.1175/1520-0450(1985)024<1059:HSDATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. C., and R. A. Anthes, 1989. Storm and Cloud Dynamics.Elsevier, 880 pp.

  • Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, doi:10.1175/JAS-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., E. R. Mansell, and M. R. Kumjian, 2015: Does wind shear cause hydrometeor size sorting? J. Atmos. Sci., 72, 340348, doi:10.1175/JAS-D-14-0084.1.

    • Search Google Scholar
    • Export Citation
  • Farley, R. D., and H. D. Orville, 1986: Numerical modeling of hailstorms and hailstone growth. Part I: Preliminary model verification and sensitivity tests. J. Climate Appl. Meteor., 25, 20142035, doi:10.1175/1520-0450(1986)025<2014:NMOHAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., 1984: A study of hail growth using observed storm conditions. J. Climate Appl. Meteor., 23, 84101, doi:10.1175/1520-0450(1984)023<0084:ASOHGU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Freud, E., D. Rosenfeld, M. O. Andreae, A. A. Costa, and P. Artaxo, 2008: Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds. Atmos. Chem. Phys., 8, 16611675, doi:10.5194/acp-8-1661-2008.

    • Search Google Scholar
    • Export Citation
  • Garcia-Garcia, F., and R. List, 1992: Laboratory measurements and parameterizations of supercoled water skin temperatures and bulk properties of gyrating hailstones. J. Atmos. Sci., 49, 20582072, doi:10.1175/1520-0469(1992)049<2058:LMAPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, doi:10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1982: A comparative study of the rates of development of potential graupel and hail embryos in High Plains storms. J. Atmos. Sci., 39, 28672897, doi:10.1175/1520-0469(1982)039<2867:ACSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, doi:10.1088/1748-9326/4/1/015004.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and I. L. Sednev, 1995: Simulation of hydrometeor size spectra evolution by water-water, ice-water and ice-ice interactions. Atmos. Res., 36, 107138, doi:10.1016/0169-8095(94)00030-H.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and I. L. Sednev, 1996: Simulation of precipitation formation in the Eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77110, doi:10.1016/S0169-8095(96)00005-1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159224, doi:10.1016/S0169-8095(00)00064-8.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., M. Pinsky, M. Shapiro, and A. Pokrovsky, 2001: Collision rate of small graupel and water drops. J. Atmos. Sci., 58, 25712595, doi:10.1175/1520-0469(2001)058<2571:CROSGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, doi:10.1175/JAS-3350.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., N. Benmoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: Attempt of classification. J. Atmos. Sci., 65, 17211748, doi:10.1175/2007JAS2515.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146, doi:10.1016/j.atmosres.2010.09.015.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., V. Phillips, N. Benmoshe, and A. Pokrovsky, 2012: The role of small soluble aerosols in the microphysics of deep maritime clouds. J. Atmos. Sci., 69, 27872807, doi:10.1175/2011JAS3649.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., T. V. Prabha, N. Benmoshe, G. Pandithurai, and M. Ovchinnikov, 2013: The mechanism of first raindrops formation in deep convective clouds. J. Geophys. Res. Atmos., 118, 91239140, doi:10.1002/jgrd.50641.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in Cloud-Resolving Models: Spectral (bin) microphysics vs. bulk-parameterization. Rev. Geophys., 53, 247322, doi:10.1002/2014RG000468.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, doi:10.1175/JAS-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, doi:10.1175/JAMC-D-13-0354.1.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., and W. R. Cotton, 2009: Aerosol Pollution Impact on Precipitation: A Scientific Review.Springer, 386 pp.

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • List, R., 2014a: New hailstone physics. Part I: Heat and mass transfer (HMT) and growth. J. Atmos. Sci., 71, 15081520, doi:10.1175/JAS-D-12-0164.1.

    • Search Google Scholar
    • Export Citation
  • List, R., 2014b: New hailstone physics. Part II: Results. J. Atmos. Sci., 71, 21142129, doi:10.1175/JAS-D-12-0165.1.

  • Loftus, A. M., and W. R. Cotton, 2014a: A triple-moment hail bulk microphysics scheme. Part II: Verification and comparison with two-moment bulk microphysics. Atmos. Res., 150, 97128, doi:10.1016/j.atmosres.2014.07.016.

    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., and W. R. Cotton, 2014b: Examination of CCN impacts on hail in a simulated supercell storm with triple-moment hail bulk microphysics. Atmos. Res., 147–148, 183204, doi:10.1016/j.atmosres.2014.04.017.

    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., W. R. Cotton, and G. G. Carrió, 2014: A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation. Atmos. Res., 149, 3557, doi:10.1016/j.atmosres.2014.05.013.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multi-moment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2013: Prediction of graupel density in a bulk microphysics scheme. J. Atmos. Sci., 70, 410429, doi:10.1175/JAS-D-12-0204.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., S. K. Chai, Y. Liu, A. J. Heymsfield, and Y. Dong, 1996: Modeling cirrus clouds. Part I: Treatment of bimodal size spectra and case study analysis. J. Atmos. Sci., 53, 29522966, doi:10.1175/1520-0469(1996)053<2952:MCCPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, doi:10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Noppel, H., A. Pokrovsky, B. Lynn, A. P. Khain, and K. D. Beheng, 2010: A spatial shift of precipitation from the sea to the land caused by introducing submicron soluble aerosols: Numerical modeling. J. Geophys. Res., 115, D18212, doi:10.1029/2009JD012645.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. Pokrovsky, and A. Khain, 2007: The influence of time-dependent melting on the dynamics and precipitation production in maritime and continental storm clouds. J. Atmos. Sci., 64, 338359, doi:10.1175/JAS3832.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. Khain, N. Benmoshe, A. Ryzhkov, and E. Ilotovich, 2014: Theory of time-dependent freezing. Part I: Description of scheme for wet growth of hail. J. Atmos. Sci., 71, 45274557, doi:10.1175/JAS-D-13-0375.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. Khain, N. Benmoshe, A. Ryzhkov, and E. Ilotovich, 2015: Theory of time-dependent freezing. Part II: Scheme for freezing raindrops and simulations by a cloud model with spectral bin microphysics. J. Atmos. Sci., 72, 262286, doi:10.1175/JAS-D-13-0376.1.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., A. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742764, doi:10.1175/1520-0469(2001)058<0742:CEODIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation.2nd ed. Oxford Press, 963 pp.

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 21192124, doi:10.1126/science.1064034.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, doi:10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. II: A theoretical study for frozen drops of radius < 500 . J. Atmos. Sci., 41, 374380, doi:10.1175/1520-0469(1984)041<0374:AWTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, doi:10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and A. Khain, 2008: Anthropogenic aerosols invigorating hail. Proc. 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, ICCP, 7.5. [Available online at http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Oral_07/Rosenfeld_extended_2.pdf.]

  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, doi:10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, doi:10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., and S. C. van den Heever, 2013: Squall-line intensification via hydrometeor recirculation. J. Atmos. Sci., 70, 20122031, doi:10.1175/JAS-D-12-0266.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1976: Hail in an axisymmetric cloud model. J. Atmos. Sci., 33, 15791601, doi:10.1175/1520-0469(1976)033<1579:HIAACM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., T. Endoh, and G. Wakahama, 1991: Vapor diffusional growth of free-falling snow crystals between −3 and −23°C. J. Meteor. Soc. Japan, 69, 1530.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, 10.1029/2011RG000369.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, doi:10.1175/JAS3585.1.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1994: Freezing rate due to heterogeneous nucleation. J. Atmos. Sci., 51, 18431856, doi:10.1175/1520-0469(1994)051<1843:FRDTHN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wisner, C., H. D. Orville, and C. Myers, 1972: A numerical model of a hail-bearing cloud. J. Atmos. Sci., 29, 11601181, doi:10.1175/1520-0469(1972)029<1160:ANMOAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1433 485 21
PDF Downloads 823 202 3