• Abbs, D. J., , and W. L. Physick, 1992: Sea-breeze observations and modelling: A review. Aust. Meteor. Mag., 41, 719.

  • Abe, S., , and T. Yoshida, 1982: The effect of the width of a peninsula to the sea-breeze. J. Meteor. Soc. Japan, 60, 10741084.

  • Antonelli, M., , and R. Rotunno, 2007: Large-eddy simulation of the onset of the sea breeze. J. Atmos. Sci., 64, 44454457, doi:10.1175/2007JAS2261.1.

    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32, 116125, doi:10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., , and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 129, doi:10.1007/s10546-010-9517-9.

    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., , and J. D. Horel, 2012: Idealized large-eddy simulations of sea and lake breezes: Sensitivity to lake diameter, heat flux and stability. Bound.-Layer Meteor., 144, 309328, doi:10.1007/s10546-012-9721-x.

    • Search Google Scholar
    • Export Citation
  • Dalu, G. A., , and R. A. Pielke, 1989: An analytical study of the sea breeze. J. Atmos. Sci., 46, 18151825, doi:10.1175/1520-0469(1989)046<1815:AASOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., , R. Rotunno, , and T. Dubos, 2011: Linear theory of the sea breeze in a thermal wind. Quart. J. Roy. Meteor. Soc., 137, 16021609, doi:10.1002/qj.847.

    • Search Google Scholar
    • Export Citation
  • Estoque, M. A., 1961: A theoretical investigation of the sea breeze. Quart. J. Roy. Meteor. Soc., 87, 136146, doi:10.1002/qj.49708737203.

    • Search Google Scholar
    • Export Citation
  • Feliks, Y., 2004: Nonlinear dynamics and chaos in the sea and land breeze. J. Atmos. Sci., 61, 21692187, doi:10.1175/1520-0469(2004)061<2169:NDACIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fisher, E. L., 1961: A theoretical study of the sea breeze. J. Meteor., 18, 216233, doi:10.1175/1520-0469(1961)018<0216:ATSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., 1947: Comments on the sea-breeze circulation. J. Meteor., 4, 18, doi:10.1175/1520-0469(1947)004<0001:COTSBC>2.0.CO;2.

  • Jeffreys, H., 1922: On the dynamics of wind. Quart. J. Roy. Meteor. Soc., 48, 2948, doi:10.1002/qj.49704820105.

  • Jiang, Q., 2012a: A linear theory of three-dimensional land–sea breezes. J. Atmos. Sci., 69, 18901909, doi:10.1175/JAS-D-11-0137.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., 2012b: On offshore propagating diurnal waves. J. Atmos. Sci., 69, 15621581, doi:10.1175/JAS-D-11-0220.1.

  • Mahrer, Y., , and R. A. Pielke, 1977: The effects of topography on sea and land breezes in a two-dimensional numerical model. Mon. Wea. Rev., 105, 11511162, doi:10.1175/1520-0493(1977)105<1151:TEOTOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mak, M. K., , and J. E. Walsh, 1976: On the relative intensities of sea and land breezes. J. Atmos. Sci., 33, 242251, doi:10.1175/1520-0469(1976)033<0242:OTRIOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., , B. D. Keim, , R. W. Talbot, , and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, doi:10.1029/2003RG000124.

    • Search Google Scholar
    • Export Citation
  • Neumann, J., 1977: On the rotation rate of the direction of sea and land breezes. J. Atmos. Sci., 34, 19131917, doi:10.1175/1520-0469(1977)034<1913:OTRROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neumann, J., , and Y. Mahrer, 1971: A theoretical study of the land and sea breeze circulation. J. Atmos. Sci., 28, 532542, doi:10.1175/1520-0469(1971)028<0532:ATSOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neumann, J., , and Y. Mahrer, 1974: A theoretical study of the sea and land breezes of circular islands. J. Atmos. Sci., 31, 20272039, doi:10.1175/1520-0469(1974)031<2027:ATSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niino, H., 1987: The linear theory of land and sea breeze circulation. J. Meteor. Soc. Japan, 65, 901921.

  • Qian, T., , C. C. Epifanio, , and F. Zhang, 2009: Linear theory calculations for the sea breeze in a background wind: The equatorial case. J. Atmos. Sci., 66, 17491763, doi:10.1175/2008JAS2851.1.

    • Search Google Scholar
    • Export Citation
  • Qian, T., , C. C. Epifanio, , and F. Zhang, 2012: Topographic effects on the tropical land and sea breeze. J. Atmos. Sci., 69, 130149, doi:10.1175/JAS-D-11-011.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1983: On the linear theory of the land and sea breeze. J. Atmos. Sci., 40, 19992009, doi:10.1175/1520-0469(1983)040<1999:OTLTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmidt, F. H., 1947: An elementary of the land- and sea-breeze circulation. J. Meteor., 4, 920, doi:10.1175/1520-0469(1947)004<0009:AETOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1996: Diurnal changes in sea-breeze direction. J. Appl. Meteor., 35, 11661169, doi:10.1175/1520-0450(1996)035<1166:DCISBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Steele, C. J., , S. R. Dorling, , R. V. Glasow, , and J. Bacon, 2013: Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields. Atmos. Chem. Phys., 13, 443461, doi:10.5194/acp-13-443-2013.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., 1974: Sea breeze theory and applications. J. Atmos. Sci., 31, 20122026, doi:10.1175/1520-0469(1974)031<2012:SBTAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xian, Z., , and R. A. Pielke, 1991: The effects of width of landmasses on the development of sea breezes. J. Appl. Meteor., 30, 12801304, doi:10.1175/1520-0450(1991)030<1280:TEOWOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yan, H., , and R. A. Anthes, 1987: The effect of latitude on the sea breeze. Mon. Wea. Rev., 115, 936956, doi:10.1175/1520-0493(1987)115<0936:TEOLOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., , L. Zhang, , S. F. Ngan, , and Y. Kenneth, 1999: A calculation method on the sea breeze circulation (in Chinese). Chin. J. Atmos. Sci., 23, 693702.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 8
PDF Downloads 54 54 8

An Analytical Solution for Three-Dimensional Sea–Land Breeze

View More View Less
  • 1 College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China
  • | 2 National Marine Environmental Forecasting Center, Beijing, China
© Get Permissions
Restricted access

Abstract

Based on the hydrostatic, incompressible Boussinesq equations in the planetary boundary layer (PBL), the three-dimensional sea–land breeze (SLB) circulation has been elegantly expressed as functions of the surface temperature distribution. The horizontal distribution of the horizontal or vertical motion is determined by the first or second derivative of the surface temperature distribution. For symmetric land–sea and temperature distribution, the full strength of the sea breeze occurs inland but not at the coastline, and the maximum updraft associates with the heating center. Setting the temperature difference between land and sea (TDLS), which varies with the island size, there would exist an optimal island size corresponding to the strongest SLB circulation that weakens with both a larger and smaller island size. Each velocity component approaches a peak at a certain vertical level. Both the peak value and the corresponding vertical level link with the vertical scale of the surface temperature: the more significant the influence of the surface temperature vertically, the stronger the SLB circulation at a higher vertical level it induces. The Weather Research and Forecasting (WRF) Model's ideal simulation for the two-dimensional sea breeze is applied to verify the theory. Two cases, land breeze and sea breeze, further support the theory's results despite a certain slight discrepancy due to the highly simplified theoretical equations.

Denotes Open Access content.

Corresponding author address: Dr. YaoKun Li, College of Global Change and Earth System Science, Beijing Normal University, No. 19 Xinjiekouwai St., Haidian District, Beijing 100875, China. E-mail: liyaokun@bnu.edu.cn

Abstract

Based on the hydrostatic, incompressible Boussinesq equations in the planetary boundary layer (PBL), the three-dimensional sea–land breeze (SLB) circulation has been elegantly expressed as functions of the surface temperature distribution. The horizontal distribution of the horizontal or vertical motion is determined by the first or second derivative of the surface temperature distribution. For symmetric land–sea and temperature distribution, the full strength of the sea breeze occurs inland but not at the coastline, and the maximum updraft associates with the heating center. Setting the temperature difference between land and sea (TDLS), which varies with the island size, there would exist an optimal island size corresponding to the strongest SLB circulation that weakens with both a larger and smaller island size. Each velocity component approaches a peak at a certain vertical level. Both the peak value and the corresponding vertical level link with the vertical scale of the surface temperature: the more significant the influence of the surface temperature vertically, the stronger the SLB circulation at a higher vertical level it induces. The Weather Research and Forecasting (WRF) Model's ideal simulation for the two-dimensional sea breeze is applied to verify the theory. Two cases, land breeze and sea breeze, further support the theory's results despite a certain slight discrepancy due to the highly simplified theoretical equations.

Denotes Open Access content.

Corresponding author address: Dr. YaoKun Li, College of Global Change and Earth System Science, Beijing Normal University, No. 19 Xinjiekouwai St., Haidian District, Beijing 100875, China. E-mail: liyaokun@bnu.edu.cn
Save