Diagnosis of Middle-Atmosphere Climate Sensitivity by the Climate Feedback–Response Analysis Method

Xun Zhu * Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland

Search for other papers by Xun Zhu in
Current site
Google Scholar
PubMed
Close
,
Jeng-Hwa Yee * Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland

Search for other papers by Jeng-Hwa Yee in
Current site
Google Scholar
PubMed
Close
,
Ming Cai Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida

Search for other papers by Ming Cai in
Current site
Google Scholar
PubMed
Close
,
William H. Swartz * Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland

Search for other papers by William H. Swartz in
Current site
Google Scholar
PubMed
Close
,
Lawrence Coy Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by Lawrence Coy in
Current site
Google Scholar
PubMed
Close
,
Valentina Aquila GESTAR, NASA Goddard Space Flight Center, Greenbelt, and The John Hopkins University, Baltimore, Maryland

Search for other papers by Valentina Aquila in
Current site
Google Scholar
PubMed
Close
,
Rolando Garcia Atmospheric Chemistry Division, NCAR, Boulder, Colorado

Search for other papers by Rolando Garcia in
Current site
Google Scholar
PubMed
Close
, and
Elsayed R Talaat ** Heliophysics Division, NASA, Washington, D.C.

Search for other papers by Elsayed R Talaat in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors present a new method to diagnose the middle-atmosphere climate sensitivity by extending the climate feedback–response analysis method (CFRAM) for the coupled atmosphere–surface system to the middle atmosphere. The middle-atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves CFRAM’s unique feature of additivity, such that partial temperature changes due to variations in external forcing and feedback processes can be added to give a total temperature change for direct comparison with the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. In this study, MCFRAM is applied to both observations and model output fields to diagnose the middle-atmosphere climate sensitivity. The authors found that the largest component of the middle-atmosphere temperature response to the 11-yr solar cycle (solar maximum vs solar minimum) is the partial temperature change due to the variation of the solar flux. Increasing CO2 cools the middle atmosphere, whereas the partial temperature change due to changes in O3 can be either positive or negative. The application of MCFRAM to model dynamical fields reconfirms the advantage of introducing the residual circulation to characterize middle-atmosphere dynamics in terms of the partial temperature changes. The radiatively driven globally averaged partial temperature change is approximately equal to the observed temperature change, ranging from −0.5 K near 25 km to −1.0 K near 70 km between solar maximum and solar minimum.

Corresponding author address: Dr. Xun Zhu, Applied Physics Laboratory, The Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD 20723-6099. E-mail: xun.zhu@jhuapl.edu

Abstract

The authors present a new method to diagnose the middle-atmosphere climate sensitivity by extending the climate feedback–response analysis method (CFRAM) for the coupled atmosphere–surface system to the middle atmosphere. The middle-atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves CFRAM’s unique feature of additivity, such that partial temperature changes due to variations in external forcing and feedback processes can be added to give a total temperature change for direct comparison with the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. In this study, MCFRAM is applied to both observations and model output fields to diagnose the middle-atmosphere climate sensitivity. The authors found that the largest component of the middle-atmosphere temperature response to the 11-yr solar cycle (solar maximum vs solar minimum) is the partial temperature change due to the variation of the solar flux. Increasing CO2 cools the middle atmosphere, whereas the partial temperature change due to changes in O3 can be either positive or negative. The application of MCFRAM to model dynamical fields reconfirms the advantage of introducing the residual circulation to characterize middle-atmosphere dynamics in terms of the partial temperature changes. The radiatively driven globally averaged partial temperature change is approximately equal to the observed temperature change, ranging from −0.5 K near 25 km to −1.0 K near 70 km between solar maximum and solar minimum.

Corresponding author address: Dr. Xun Zhu, Applied Physics Laboratory, The Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD 20723-6099. E-mail: xun.zhu@jhuapl.edu
Save
  • Akmaev, R. A., V. I. Fomichev, and X. Zhu, 2006: Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere. J. Atmos. Sol.-Terr. Phys., 68, 18791889, doi:10.1016/j.jastp.2006.03.008.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609646, doi:10.1017/S0022112078002773.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

    • Search Google Scholar
    • Export Citation
  • Aquila, V., L. D. Oman, R. S. Stolarski, P. R. Colarco, and P. A. Newman, 2012: Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption. J. Geophys. Res., 117, D06216, doi:10.1029/2011JD016968.

    • Search Google Scholar
    • Export Citation
  • Aquila, V., L. D. Oman, R. S. Stolarski, A. R. Douglass, and P. A. Newman, 2013: The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at southern and northern midlatitudes. J. Atmos. Sci., 70, 894900, doi:10.1175/JAS-D-12-0143.1.

    • Search Google Scholar
    • Export Citation
  • Banks, P. M., and G. Kockarts, 1973: Aeronomy: Part B.Academic Press, 355 pp.

  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741, doi:10.1007/s00382-006-0162-4.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and J. Lu, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons. Climate Dyn., 32, 887900, doi:10.1007/s00382-008-0424-4.

    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Douglass, A. R., C. J. Weaver, R. B. Rood, and L. Coy, 1996: A three-dimensional simulation of the ozone annual cycle using winds from a data assimilation system. J. Geophys. Res., 101, 14631474, doi:10.1029/95JD02601.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1978: On the mean meridional mass motions of the stratosphere and mesosphere. J. Atmos. Sci., 35, 23252333, doi:10.1175/1520-0469(1978)035<2325:OTMMMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., 1982: A parameterization of scale-dependent radiative damping rates in the middle atmosphere. J. Atmos. Sci., 39, 11411152, doi:10.1175/1520-0469(1982)039<1141:APOSDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., 1987: Response of the middle atmosphere to changing O3 and CO2—A speculative tutorial. Transport Processes in the Middle Atmosphere, G. Visconti and R. Garcia, Eds., D. Reidel, 371–386.

  • Fueglistaler, S., P. H. Haynes, and P. M. Forster, 2011: The annual cycle in lower stratospheric temperatures revisited. Atmos. Chem. Phys., 11, 37013711, doi:10.5194/acp-11-3701-2011.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739, doi:10.1175/2008JAS2712.1.

    • Search Google Scholar
    • Export Citation
  • Goody, R. M., and Y. L. Yung, 1989: Atmospheric Radiation: Theoretical Basis. 2nd ed. Oxford University Press, 519 pp.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Kiehl, J. T., and S. Solomon, 1986: On the radiative balance of the stratosphere. J. Atmos. Sci., 43, 15251534, doi:10.1175/1520-0469(1986)043<1525:OTRBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lean, J., 1991: Variations in the Sun’s radiative output. Rev. Geophys., 29, 505535, doi:10.1029/91RG01895.

  • López-Puertas, M., and F. W. Taylor, 2001: Non-LTE Radiative Transfer in the Atmosphere. World Scientific, 487 pp.

  • Lu, J., and M. Cai, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32, 873885, doi:10.1007/s00382-008-0425-3.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and M. Cai, 2010: Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Climate Dyn., 34, 669687, doi:10.1007/s00382-009-0673-x.

    • Search Google Scholar
    • Export Citation
  • Lübken, F.-J., 1999: Thermal structure of the Arctic summer mesosphere. J. Geophys. Res., 104, 91359149, doi:10.1029/1999JD900076.

  • Lübken, F.-J., M. J. Jarvis, and G. O. L. Jones, 1999: First in situ temperature measurements at the Antarctic summer mesopause. Geophys. Res. Lett., 26, 35813584, doi:10.1029/1999GL010719.

    • Search Google Scholar
    • Export Citation
  • Meier, R. R., D. E. Anderson, and M. Nicolet, 1982: Radiation field in the troposphere and stratosphere from 240 to 1000 nm. I. General analysis. Planet. Space Sci., 30, 923933, doi:10.1016/0032-0633(82)90134-9.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, J. Bacmeister, I.-S. Song, and A. Eichmann, 2012: The GEOS-5 Atmospheric General Circulation Model: Mean climate and development from MERRA to Fortuna. NASA Tech. Rep. Series on Global Modeling and Data Assimilation NASA/TM-2012-104606, Vol. 28, 115 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011790.pdf.]

  • Nicolet, M., R. R. Meier, and D. E. Anderson, 1982: Radiation field in the troposphere and stratosphere from 240 to 1000 nm. II. Numerical analysis. Planet. Space Sci., 30, 935983, doi:10.1016/0032-0633(82)90135-0.

    • Search Google Scholar
    • Export Citation
  • Olaguer, E. P., H. Yang, and K. K. Tung, 1992: A reexamination of the radiative balance of the stratosphere. J. Atmos. Sci., 49, 12421263, doi:10.1175/1520-0469(1992)049<1242:AROTRB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., R. S. Stolarski, A. R. Douglass, P. A. Newman, J. E. Nielsen, S. M. Frith, and M. L. Gupta, 2008: Goddard Earth Observing System chemistry-climate model simulations of stratospheric ozone-temperature coupling between 1950 and 2005. J. Geophys. Res., 113, D12103, doi:10.1029/2007JD009511.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2002: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59, 21412152, doi:10.1175/1520-0469(2002)059<2141:TDUITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. Series on Global Modeling and Data Assimilation NASA/TM-2008-104606, Vol. 27, 101 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Rienecker369.pdf.]

  • Russell, J. M., III, M. G. Mlynczak, L. L. Gordley, J. Tansock, and R. Esplin, 1999: An overview of the SAVER experiment and preliminary calibration results. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 3756), 277–288, doi:10.1117/12.366382.

    • Search Google Scholar
    • Export Citation
  • Sejas, S., M. Cai, A. Hu, J. Meehl, W. Washington, and P. C. Taylor, 2014: Individual feedback contributions to the seasonality of surface warming. J. Climate, 27, 56535669, doi:10.1175/JCLI-D-13-00658.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784797, doi:10.1175/2010JAS3608.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. Rosenlof, R. W. Portmann, J. S. Daniel, S. Davis, T. J. Sanford, and G. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Song, X., G. J. Zhang, and M. Cai, 2014: Characterizing the climate feedback pattern in the NCAR CCSM3-SOM using hourly data. J. Climate, 27, 29122930, doi:10.1175/JCLI-D-13-00567.1.

    • Search Google Scholar
    • Export Citation
  • Spiegel, E. A., 1957: The smoothing of temperature fluctuations by radiative transfer. Astrophys. J., 126, 202207, doi:10.1086/146386.

    • Search Google Scholar
    • Export Citation
  • Swartz, W. H., R. S. Stolarski, L. D. Oman, E. L. Fleming, and C. H. Jackman, 2012: Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model. Atmos. Chem. Phys., 12, 59375948, doi:10.5194/acp-12-5937-2012.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., M. Cai, A. Hu, G. A. Meehl, W. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26, 70237043, doi:10.1175/JCLI-D-12-00696.1.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971415, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., J. R. Holton, and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169174, doi:10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., 1988: A steady two-dimensional climate model with residual circulation. Adv. Atmos. Sci., 5, 455468, doi:10.1007/BF02656791.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., 1993: Radiative damping revisited: Parameterization of damping rate in the middle atmosphere. J. Atmos. Sci., 50, 30083021, doi:10.1175/1520-0469(1993)050<3008:RDRPOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., 1994: An accurate and efficient radiation algorithm for middle atmosphere models. J. Atmos. Sci., 51, 35933614, doi:10.1175/1520-0469(1994)051<3593:AAAERA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., 2004: Radiative transfer in the middle atmosphere and planetary atmospheres. Observation, Theory and Modeling of Atmospheric Variability, X. Zhu et al., Eds., World Scientific, 359–396.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., and D. F. Strobel, 1991: Radiative damping in the upper mesosphere. J. Atmos. Sci., 48, 184199, doi:10.1175/1520-0469(1991)048<0184:RDITUM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., M. E. Summers, and D. F. Strobel, 1991: Analytic models for the ozone radiative absorption rate at 9.6 μm in the mesosphere. J. Geophys. Res., 96, 18 55118 559, doi:10.1029/91JD01969.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., M. E. Summers, and D. F. Strobel, 1992: Calculation of CO2 15-μm band atmospheric cooling rates by Curtis matrix interpolation of correlated-k coefficients. J. Geophys. Res., 97, 12 78712 797, doi:10.1029/92JD01311.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., J.-H. Yee, S. A. Lloyd, and D. F. Strobel, 1999: Numerical modeling of chemical-dynamical coupling in the upper stratosphere and mesosphere. J. Geophys. Res., 104, 23 99524 011, doi:10.1029/1999JD900476.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., J.-H. Yee, and E. R. Talaat, 2001: Diagnosis of dynamics and energy balance in the mesosphere and lower thermosphere. J. Atmos. Sci., 58, 24412454, doi:10.1175/1520-0469(2001)058<2441:DODAEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., D. F. Strobel, and M. F. Flasar, 2008: Exchange of global mean angular momentum between an atmosphere and its underlying planet. Planet. Space Sci., 56, 15241531, doi:10.1016/j.pss.2008.05.014.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., J.-H. Yee, W. H. Swartz, E. R. Talaat, and L. Coy, 2010: A spectral parameterization of drag, eddy diffusion, and wave heating for a three-dimensional flow induced by breaking gravity waves. J. Atmos. Sci., 67, 25202536, doi:10.1175/2010JAS3302.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 929 599 172
PDF Downloads 201 43 8