• Abel, S. J., , and I. A. Boutle, 2012: An improved representation of the raindrop size distribution for single-moment microphysics schemes. Quart. J. Roy. Meteor. Soc., 138, 21512162, doi:10.1002/qj.1949.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and et al. , 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 4156, doi:10.1175/JCLI-D-13-00169.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., , A. Hill, , K. Furtado, , and A. Korolev, 2014: Mixed-phase clouds in a turbulent environment. Part 2: Analytic treatment. Quart. J. Roy. Meteor. Soc., 21, 26512663, doi:10.1002/qj.2175.

    • Search Google Scholar
    • Export Citation
  • Forbes, M. R., , and M. Ahlgrimm, 2014: On the representation of high-latitude boundary layer mixed-phase cloud in the ECMWF global model. Mon. Wea. Rev., 142, 3425–3445, doi:10.1175/MWR-D-13-00325.1.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., , and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA). J. Appl. Meteor. Climatol., 47, 778794, doi:10.1175/2007JAMC1635.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and et al. , 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single-layer cloud. Quart. J. Roy. Meteor. Soc., 135, 9791002, doi:10.1002/qj.416.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., , and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 6686, doi:10.1175/2007JAS2355.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , A. Wielicki, , D. R. Doelling, , G. Louis Smith, , D. F. Keyes, , S. Kato, , N. Manalo-Smith, , and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., 2012: Improvements to a prognostic cloud scheme through changes to its cloud erosion parametrization. Atmos. Sci. Lett., 13, 95102, doi:10.1002/asl.374.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 2011: The Southern Ocean in the Earth system. Science Diplomacy: Antarctica, Science, and the Governance of International Spaces, P. A. Berkman et al., Eds., Smithsonian Institution Scholarly Press, 175–187.

  • Rodean, H. C., Ed., 1997: Stochastic Lagrangian Models of Turbulent Diffusion. Meteor. Monogr., No. 26, Amer. Meteor. Soc., 84 pp.

  • Sachidananda, M., , and D. S. Zrnić, 1986: Differential propagation phase shift and rainfall rate estimation. Radio Sci., 21, 235247, doi:10.1029/RS021i002p00235.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , T. Meissner, , C. Gentemann, , and M. Brewer, 2014: Remote Sensing Systems AQUA AMSR-E 3-day environmental suite on 0.25 deg grid, version 7.0. Remote Sensing Systems, accessed 4 November 2014. [Available online at www.remss.com/missions/amsre.]

  • Wilson, D. R., , A. C. Bushell, , A. M. Kerr-Munslow, , J. D. Price, , and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, doi:10.1002/qj.333.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and et al. , 2010: The PreVOCA experiment: Modeling the lower troposphere in the Southeast Pacific. Atmos. Chem. Phys., 10, 47574774, doi:10.5194/acp-10-4757-2010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 87 24
PDF Downloads 82 82 21

A Physically Based Subgrid Parameterization for the Production and Maintenance of Mixed-Phase Clouds in a General Circulation Model

View More View Less
  • 1 Met Office, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

A physically based method for parameterizing the role of subgrid-scale turbulence in the production and maintenance of supercooled liquid water and mixed-phase clouds is presented. The approach used is to simplify the dynamics of supersaturation fluctuations to a stochastic differential equation that can be solved analytically, giving increments to the prognostic liquid cloud fraction and liquid water content fields in a general circulation model (GCM). Elsewhere, it has been demonstrated that the approach captures the properties of decameter-resolution large-eddy simulations of a turbulent mixed-phase environment. In this paper, it is shown that it can be implemented in a GCM, and the effects that this has on Southern Ocean biases and on Arctic stratus are investigated.

Corresponding author address: Kalli Furtado, Met Office, FitzRoy Rd., Exeter EX1 3PB, United Kingdom. E-mail: kalli.furtado@metoffice.gov.uk

Abstract

A physically based method for parameterizing the role of subgrid-scale turbulence in the production and maintenance of supercooled liquid water and mixed-phase clouds is presented. The approach used is to simplify the dynamics of supersaturation fluctuations to a stochastic differential equation that can be solved analytically, giving increments to the prognostic liquid cloud fraction and liquid water content fields in a general circulation model (GCM). Elsewhere, it has been demonstrated that the approach captures the properties of decameter-resolution large-eddy simulations of a turbulent mixed-phase environment. In this paper, it is shown that it can be implemented in a GCM, and the effects that this has on Southern Ocean biases and on Arctic stratus are investigated.

Corresponding author address: Kalli Furtado, Met Office, FitzRoy Rd., Exeter EX1 3PB, United Kingdom. E-mail: kalli.furtado@metoffice.gov.uk
Save