• Avila, L. A., , and S. R. Stewart, 2013: Atlantic hurricane season of 2011. Mon. Wea. Rev., 141, 25772596, doi:10.1175/MWR-D-12-00230.1.

    • Search Google Scholar
    • Export Citation
  • Bhatia, K. T., , and D. S. Nolan, 2013: Relating the skill of tropical cyclone intensity forecasts to the synoptic environment. Wea. Forecasting, 28, 961980, doi:10.1175/WAF-D-12-00110.1.

    • Search Google Scholar
    • Export Citation
  • Brown, B. R., , and G. J. Hakim, 2015: Sensitivity of intensifying Atlantic hurricanes to vortex structure. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2540, in press.

    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., , R. D. Torn, , C. Snyder, , C. Davis, , W. Wang, , and J. Done, 2013: Evaluation of the Advanced Hurricane WRF data assimilation system for the 2009 Atlantic hurricane season. Mon. Wea. Rev., 141, 523541, doi:10.1175/MWR-D-12-00139.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, doi:10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., , J. A. Knaff, , and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, doi:10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., , and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C., , and T. J. Galarneau, 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686704, doi:10.1175/2008JAS2819.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and et al. , 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, doi:10.1175/2007MWR2085.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., , W. Wang, , J. Dudhia, , and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts? Wea. Forecasting, 25, 18261841, doi:10.1175/2010WAF2222423.1.

    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., , R. A. Houze, , and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, doi:10.1175/JAS-D-13-0298.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dolling, K. P., , and G. M. Barnes, 2012: The creation of a high equivalent potential temperature reservoir in Tropical Storm Humberto (2001) and its possible role in storm deepening. Mon. Wea. Rev., 140, 492505, doi:10.1175/MWR-D-11-00068.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , C. DesAutels, , C. E. Holloway, , and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Foerster, A. M., , M. M. Bell, , P. A. Harr, , and S. C. Jones, 2014: Observations of the eyewall structure of Typhoon Sinlaku (2008) during the transformation stage of extratropical transition. Mon. Wea. Rev., 142, 33723392, doi:10.1175/MWR-D-13-00313.1.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., , and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405430, doi:10.1175/MWR-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., , C. A. Davis, , and M. A. Shapiro, 2013: Intensification of Hurricane Sandy (2012) through extratropical warm core seclusion. Mon. Wea. Rev., 141, 42964321, doi:10.1175/MWR-D-13-00181.1.

    • Search Google Scholar
    • Export Citation
  • Gall, R., , J. Franklin, , F. Marks, , E. N. Rappaport, , and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, doi:10.1175/BAMS-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Ge, X., , T. Li, , and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 38593875, doi:10.1175/JAS-D-13-066.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., , and R. A. Houze, 2011: Vertical structure of hurricane eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 68, 16371652, doi:10.1175/2011JAS3578.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. S. Peng, , B. Fu, , and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, doi:10.1175/2010MWR3185.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , Y. Noh, , and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687, doi:10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., , S. J. Taubman, , P. D. Brown, , M. J. Iacono, , and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , D. Vollaro, , and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 24932509, doi:10.1175/JAS3291.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., , P. Dodge, , D. Vollaro, , K. L. Corbosiero, , and F. Marks, 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354, doi:10.1175/JAS3591.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , L. L. Lussier III, , R. W. Moore, , and Z. Wang, 2010: The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment—Part 1: The role of the easterly wave critical layer. Atmos. Chem. Phys., 10, 98799900, doi:10.5194/acp-10-9879-2010.

    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., , F. Zhang, , and D. P. Stern, 2013: Predictability and dynamics of a nonintensifying tropical storm: Erika (2009). J. Atmos. Sci., 70, 25052524, doi:10.1175/JAS-D-12-0243.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , and M. G. McGauley, 2012: Tropical cyclogenesis in wind shear: Climatological relationships and physical processes. Cyclones: Formation, Triggers and Control, K. Oouchi and H. Fudeyasu, Eds., Nova Science Publishers, 1–36.

  • Rappaport, E. N., and et al. , 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, doi:10.1175/2008WAF2222128.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., , and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, doi:10.1029/2006GL028607.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., , R. Rogers, , and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, doi:10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., , M. T. Montgomery, , and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., , P. Reasor, , and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Shelton, K. L., , and J. Molinari, 2009: Life of a six-hour hurricane. Mon. Wea. Rev., 137, 5167, doi:10.1175/2008MWR2472.1.

  • Sippel, J. A., , and F. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 34403459, doi:10.1175/2008JAS2597.1.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., , and F. Zhang, 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 17591778, doi:10.1175/2010JAS3172.1.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., , S. A. Braun, , and C.-L. Shie, 2011: Environmental influences on the strength of Tropical Storm Debby (2006). J. Atmos. Sci., 68, 25572581, doi:10.1175/2011JAS3648.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Tang, B., , and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, doi:10.1175/2010JAS3318.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., , and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 23942413, doi:10.1175/JAS-D-11-0232.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Performance of a mesoscale ensemble Kalman filter (EnKF) during the NOAA High-Resolution Hurricane Test. Mon. Wea. Rev., 138, 43754392, doi:10.1175/2010MWR3361.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., , and G. J. Hakim, 2009: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 33883406, doi:10.1175/2009MWR2879.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., , and C. A. Davis, 2012: The influence of shallow convection on tropical cyclone track forecasts. Mon. Wea. Rev., 140, 21882197, doi:10.1175/MWR-D-11-00246.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., , and D. Cook, 2013: The role of vortex and environment errors in genesis forecasts of Hurricanes Danielle and Karl (2010). Mon. Wea. Rev., 141, 232251, doi:10.1175/MWR-D-12-00086.1.

    • Search Google Scholar
    • Export Citation
  • Van Sang, N., , R. K. Smith, , and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, doi:10.1002/qj.235.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and et al. , 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223, doi:10.1175/BAMS-86-2-205.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and et al. , 2012: Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett., 39, L20809, doi:10.1029/2012GL053546.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961, doi:10.1175/2009JAS2824.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., , and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, doi:10.1175/JAS-D-12-0133.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 95 12
PDF Downloads 70 70 12

An Ensemble Approach to Investigate Tropical Cyclone Intensification in Sheared Environments. Part I: Katia (2011)

View More View Less
  • 1 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The mechanisms responsible for tropical cyclone (TC) intensification in the presence of moderate vertical shear magnitudes are not well understood. To investigate how TCs intensify in spite of moderate shear, this study employed a 96-member ensemble generated with the Advanced Hurricane Weather Research and Forecasting (AHW) Model. In this first part, AHW ensemble forecasts for TC Katia (2011) were evaluated when Katia was a weak tropical storm in an environment of 12 m s−1 easterly shear. The 5-day AHW forecasts for Katia were characterized by large variability in the intensity, presenting an opportunity to compare the underlying mechanisms between two subsets of members that predicted different intensity scenarios: intensification and weakening. The key difference between these two subsets was found in the lower-tropospheric moisture north of Katia (i.e., right-of-shear quadrant). With more water vapor in the lower troposphere, buoyant updrafts helped to moisten the midtroposphere and enhanced the likelihood of deep and organized convection in the subset that predicted intensification. This finding was validated with a vorticity budget, which showed that deep cyclonic vortex stretching and tilting contributed to spinning up the circulation after the midtroposphere had moistened. Sensitivity experiments, in which the initial conditions were perturbed, also demonstrated the importance of lower-tropospheric moisture, which suggests that moisture observations may help reduce uncertainty in forecasts of weak, sheared tropical storms.

Corresponding author address: Rosimar Rios-Berrios, University at Albany, State University of New York, DAES-ES 325, 1400 Washington Ave., Albany, NY 12222. E-mail: rrios-berrios@albany.edu

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Abstract

The mechanisms responsible for tropical cyclone (TC) intensification in the presence of moderate vertical shear magnitudes are not well understood. To investigate how TCs intensify in spite of moderate shear, this study employed a 96-member ensemble generated with the Advanced Hurricane Weather Research and Forecasting (AHW) Model. In this first part, AHW ensemble forecasts for TC Katia (2011) were evaluated when Katia was a weak tropical storm in an environment of 12 m s−1 easterly shear. The 5-day AHW forecasts for Katia were characterized by large variability in the intensity, presenting an opportunity to compare the underlying mechanisms between two subsets of members that predicted different intensity scenarios: intensification and weakening. The key difference between these two subsets was found in the lower-tropospheric moisture north of Katia (i.e., right-of-shear quadrant). With more water vapor in the lower troposphere, buoyant updrafts helped to moisten the midtroposphere and enhanced the likelihood of deep and organized convection in the subset that predicted intensification. This finding was validated with a vorticity budget, which showed that deep cyclonic vortex stretching and tilting contributed to spinning up the circulation after the midtroposphere had moistened. Sensitivity experiments, in which the initial conditions were perturbed, also demonstrated the importance of lower-tropospheric moisture, which suggests that moisture observations may help reduce uncertainty in forecasts of weak, sheared tropical storms.

Corresponding author address: Rosimar Rios-Berrios, University at Albany, State University of New York, DAES-ES 325, 1400 Washington Ave., Albany, NY 12222. E-mail: rrios-berrios@albany.edu

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Save