Immersion Freezing of Kaolinite: Scaling with Particle Surface Area

Susan Hartmann Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Susan Hartmann in
Current site
Google Scholar
PubMed
Close
,
Heike Wex Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Heike Wex in
Current site
Google Scholar
PubMed
Close
,
Tina Clauss Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Tina Clauss in
Current site
Google Scholar
PubMed
Close
,
Stefanie Augustin-Bauditz Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Stefanie Augustin-Bauditz in
Current site
Google Scholar
PubMed
Close
,
Dennis Niedermeier Department of Physics, Michigan Technological University, Houghton, Michigan, and Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Dennis Niedermeier in
Current site
Google Scholar
PubMed
Close
,
Michael Rösch Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, and Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Michael Rösch in
Current site
Google Scholar
PubMed
Close
, and
Frank Stratmann Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Frank Stratmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study presents an analysis showing that the freezing probability of kaolinite particles from Fluka scales exponentially with particle surface area for different atmospherically relevant particle sizes. Immersion freezing experiments were performed at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Size-selected kaolinite particles with mobility diameters of 300, 700, and 1000 nm were analyzed with one particle per droplet. First, it is demonstrated that immersion freezing is independent of the droplet volume. Using the mobility analyzer technique for size selection involves the presence of multiply charged particles in the quasi-monodisperse aerosol, which are larger than singly charged particles. The fractions of these were determined using cloud droplet activation measurements. The development of a multiple charge correction method has proven to be essential for deriving ice fractions and other quantities for measurements in which the here-applied method of size selection is used. When accounting for multiply charged particles (electric charge itself does not matter), both a time-independent and a time-dependent description of the freezing process can reproduce the measurements over the range of examined particle sizes. Hence, either a temperature-dependent surface site density or a single contact angle distribution was sufficient to parameterize the freezing behavior. From a comparison with earlier studies using kaolinite samples from the same provider, it is concluded that the neglect of multiply charged particles and, to a lesser extent, the effect of time can cause a significant overestimation of the ice nucleation site density of one order of magnitude, which translates into a temperature bias of 5–6 K.

Denotes Open Access content.

Corresponding author address: Susan Hartmann, Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Permoserstr. 15, Leipzig 04318, Germany. E-mail: hartmann@tropos.de

Denotes Chemistry/Aerosol content

Abstract

This study presents an analysis showing that the freezing probability of kaolinite particles from Fluka scales exponentially with particle surface area for different atmospherically relevant particle sizes. Immersion freezing experiments were performed at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Size-selected kaolinite particles with mobility diameters of 300, 700, and 1000 nm were analyzed with one particle per droplet. First, it is demonstrated that immersion freezing is independent of the droplet volume. Using the mobility analyzer technique for size selection involves the presence of multiply charged particles in the quasi-monodisperse aerosol, which are larger than singly charged particles. The fractions of these were determined using cloud droplet activation measurements. The development of a multiple charge correction method has proven to be essential for deriving ice fractions and other quantities for measurements in which the here-applied method of size selection is used. When accounting for multiply charged particles (electric charge itself does not matter), both a time-independent and a time-dependent description of the freezing process can reproduce the measurements over the range of examined particle sizes. Hence, either a temperature-dependent surface site density or a single contact angle distribution was sufficient to parameterize the freezing behavior. From a comparison with earlier studies using kaolinite samples from the same provider, it is concluded that the neglect of multiply charged particles and, to a lesser extent, the effect of time can cause a significant overestimation of the ice nucleation site density of one order of magnitude, which translates into a temperature bias of 5–6 K.

Denotes Open Access content.

Corresponding author address: Susan Hartmann, Department of Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Permoserstr. 15, Leipzig 04318, Germany. E-mail: hartmann@tropos.de

Denotes Chemistry/Aerosol content

Save
  • Alpert, P. A., J. Y. Aller, and D. A. Knopf, 2011: Ice nucleation from aqueous NACL droplets with and without marine diatoms. Atmos. Chem. Phys., 11, 55395555, doi:10.5194/acp-11-5539-2011.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Coauthors, 2009: Evolution of the ice phase in tropical altocumulus: SAMUM lidar observations over Cape Verde. J. Geophys. Res., 114, D17208, doi:10.1029/2008jd011659.

    • Search Google Scholar
    • Export Citation
  • Archuleta, C. M., P. J. DeMott, and S. M. Kreidenweis, 2005: Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys., 5, 26172634, doi:10.5194/acp-5-2617-2005.

    • Search Google Scholar
    • Export Citation
  • Arnold, E., J. Merrill, M. Leinen, and J. King, 1998: The effect of source area and atmospheric transport on mineral aerosol collected over the North Pacific Ocean. Global Planet. Change, 18, 137159, doi:10.1016/S0921-8181(98)00013-7.

    • Search Google Scholar
    • Export Citation
  • Atkinson, J. D., and Coauthors, 2013: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355358, doi:10.1038/nature12278.

    • Search Google Scholar
    • Export Citation
  • Augustin, S., and Coauthors, 2013: Immersion freezing of birch pollen washing water. Atmos. Chem. Phys., 13, 10 98911 003, doi:10.5194/acp-13-10989-2013.

    • Search Google Scholar
    • Export Citation
  • Augustin-Bauditz, S., H. Wex, S. Kanter, M. Ebert, D. Niedermeier, F. Stolz, A. Prager, and F. Stratmann, 2014: The immersion mode ice nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts. Geophys. Res. Lett., 41, 73757382, doi:10.1002/2014GL061317.

    • Search Google Scholar
    • Export Citation
  • Avila, A., I. Queralt-Mitjans, and M. Alarcon, 1997: Mineralogical composition of African dust delivered by red rains over northeastern Spain. J. Geophys. Res., 102, 21 97721 996, doi:10.1029/97JD00485.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, doi:10.1002/qj.49707934207.

    • Search Google Scholar
    • Export Citation
  • Blanco, A., F. De Tomasi, E. Filippo, D. Manno, M. R. Perrone, A. Serra, A. M. Tafuro, and A. Tepore, 2003: Characterization of African dust over southern Italy. Atmos. Chem. Phys., 3, 21472159, doi:10.5194/acp-3-2147-2003.

    • Search Google Scholar
    • Export Citation
  • Broadley, S. L., B. J. Murray, R. J. Herbert, J. D. Atkinson, S. Dobbie, T. L. Malkin, E. Condliffe, and L. Neve, 2012: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust. Atmos. Chem. Phys., 12, 287307, doi:10.5194/acp-12-287-2012.

    • Search Google Scholar
    • Export Citation
  • Chester, R., E. J. Sharples, G. S. Sanders, and A. C. Saydam, 1984: Saharan dust incursion over the Tyrrhenian Sea. Atmos. Environ., 18, 929935, doi:10.1016/0004-6981(84)90069-6.

    • Search Google Scholar
    • Export Citation
  • Clauss, T., A. Kiselev, S. Hartmann, S. Augustin, S. Pfeifer, D. Niedermeier, H. Wex, and F. Stratmann, 2013: Application of linear polarized light for the discrimination of frozen and liquid droplets in ice nucleation experiments. Atmos. Meas. Tech., 6, 10411052, doi:10.5194/amt-6-1041-2013.

    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., O. Moehler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, and M. Gallagher, 2009: Studies of heterogeneous freezing by three different desert dust samples. Atmos. Chem. Phys., 9, 28052824, doi:10.5194/acp-9-2805-2009.

    • Search Google Scholar
    • Export Citation
  • de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner, 2011: Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors. Geophys. Res. Lett., 38, L01803, doi:10.1029/2010GL046016.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003a: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660, doi:10.1073/pnas.2532677100.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003b: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:10.1029/2003gl017410.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, doi:10.1073/pnas.0910818107.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., and S. K. Mitra, 1998: A laboratory study of the effects of a kerosene-burner exhaust on ice nucleation and the evaporation rate of ice crystals. Atmos. Environ., 32, 31453151, doi:10.1016/S1352-2310(97)00467-6.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., and S. Wurzler, 2004: Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in the drops. J. Atmos. Sci., 61, 20632072, doi:10.1175/1520-0469(2004)061<2063:HDFITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., S. Matthias-Maser, R. Jaenicke, and S. K. Mitra, 2002: The ice nucleating ability of pollen: Part II. Laboratory studies in immersion and contact freezing modes. Atmos. Res., 61, 125133, doi:10.1016/S0169-8095(01)00132-6.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., M. Simmel, and S. Wurzler, 2006: Numerical sensitivity studies on the impact of aerosol properties and drop freezing modes on the glaciation, microphysics, and dynamics of clouds. J. Geophys. Res., 111, D07202, doi:10.1029/2005JD005884.

    • Search Google Scholar
    • Export Citation
  • Ganor, E., 1991: The composition of clay minerals transported to Israel as indicators of Saharan dust emission. Atmos. Environ., 25A, 26572664, doi:10.1016/0960-1686(91)90195-d.

    • Search Google Scholar
    • Export Citation
  • Ganor, E., and Y. Mamane, 1982: Transport of Saharan dust across the eastern Mediterranean. Atmos. Environ., 16, 581587, doi:10.1016/0004-6981(82)90167-6.

    • Search Google Scholar
    • Export Citation
  • Glaccum, R. A., and J. M. Prospero, 1980: Saharan aerosols over the tropical North Atlantic—Mineralogy. Mar. Geol., 37, 295321, doi:10.1016/0025-3227(80)90107-3.

    • Search Google Scholar
    • Export Citation
  • Hartmann, S., D. Niedermeier, J. Voigtlaender, T. Clauss, R. A. Shaw, H. Wex, A. Kiselev, and F. Stratmann, 2011: Homogeneous and heterogeneous ice nucleation at LACIS: Operating principle and theoretical studies. Atmos. Chem. Phys., 11, 17531767, doi:10.5194/acp-11-1753-2011.

    • Search Google Scholar
    • Export Citation
  • Hiranuma, N., and Coauthors, 2015: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques. Atmos. Chem. Phys., 15, 24892518, doi:10.5194/acp-15-2489-2015.

    • Search Google Scholar
    • Export Citation
  • Hoffer, T. E., 1961: A laboratory investigation of droplet freezing. J. Meteor., 18, 766778, doi:10.1175/1520-0469(1961)018<0766:ALIODF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, doi:10.5194/acp-12-9817-2012.

    • Search Google Scholar
    • Export Citation
  • Johnson, L. R., 1976: Particle-size fractionation of eolian dusts during transport and sampling. Mar. Geol., 21, M17M21, doi:10.1016/0025-3227(76)90099-2.

    • Search Google Scholar
    • Export Citation
  • Kaaden, N., and Coauthors, 2009: State of mixing, shape factor, number size distribution, and hygroscopic growth of the Saharan anthropogenic and mineral dust aerosol at Tinfou, Morocco. Tellus, 61B, 5163, doi:10.1111/j.1600-0889.2008.00388.x.

    • Search Google Scholar
    • Export Citation
  • Kamphus, M., and Coauthors, 2010: Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: Single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmos. Chem. Phys., 10, 80778095, doi:10.5194/acp-10-8077-2010.

    • Search Google Scholar
    • Export Citation
  • Kandler, K., and Coauthors, 2007: Chemical composition and complex refractive index of Saharan mineral dust at Izana, Tenerife (Spain) derived by electron microscopy. Atmos. Environ., 41, 80588074, doi:10.1016/j.atmosenv.2007.06.047.

    • Search Google Scholar
    • Export Citation
  • Kandler, K., and Coauthors, 2009: Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus, 61B, 3250, doi:10.1111/j.1600-0889.2008.00385.x.

    • Search Google Scholar
    • Export Citation
  • Kandler, K., and Coauthors, 2011: Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan mineral dust experiment: Particle chemistry, shape, mixing state and complex refractive index. Tellus, 63B, 475496, doi:10.1111/j.1600-0889.2011.00550.x.

    • Search Google Scholar
    • Export Citation
  • Knopf, D. A., and P. A. Alpert, 2013: A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets. Faraday Discuss., 165, 513534, doi:10.1039/c3fd00035d.

    • Search Google Scholar
    • Export Citation
  • Knutson, E. O., and K. T. Whitby, 1975: Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci., 6, 443451, doi:10.1016/0021-8502(75)90060-9.

    • Search Google Scholar
    • Export Citation
  • Kumai, M., 1961: Snow crystals and the identification of the nuclei in the northern United States of America. J. Meteor., 18, 139150, doi:10.1175/1520-0469(1961)018<0139:SCATIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Langham, E. J., and B. J. Mason, 1958: The heterogeneous and homogeneous nucleation of supercooled water. Proc. Roy. Soc. London, 247A, 493504, doi:10.1098/rspa.1958.0207.

    • Search Google Scholar
    • Export Citation
  • Leinert, S., 2002: Hygroscopicity of micrometer-sized aerosol particles—A new measurement technique. Ph.D. dissertation, University of Leipzig, 137 pp.

  • Levin, J., 1950: Statistical explanation of spontaneous freezing of water droplet. National Advisory Committee for Aeronautics Tech. Note 2234, 28 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930082877.pdf.]

  • Lohmann, U., 2006: Aerosol effects on clouds and climate. Space Sci. Rev., 125, 129137, doi:10.1007/s11214-006-9051-8.

  • Lüönd, F., O. Stetzer, A. Welti, and U. Lohmann, 2010: Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res., 115, D14201, doi:10.1029/2009JD012959.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., and C. Luo, 2003: A less dusty future? Geophys. Res. Lett., 30, 1903, doi:10.1029/2003gl017880.

  • Marcolli, C., S. Gedamke, T. Peter, and B. Zobrist, 2007: Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys., 7, 50815091, doi:10.5194/acp-7-5081-2007.

    • Search Google Scholar
    • Export Citation
  • Maring, H., D. L. Savoie, M. A. Izaguirre, L. Custals, and J. S. Reid, 2003: Mineral dust aerosol size distribution change during atmospheric transport. J. Geophys. Res., 108, 8592, doi:10.1029/2002JD002536.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1960: Ice-nucleating properties of clay minerals and stony meteorites. Quart. J. Roy. Meteor. Soc., 86, 552556, doi:10.1002/qj.49708637014.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., and J. Maybank, 1958: Ice-nucleating properties of some natural mineral dusts. Quart. J. Roy. Meteor. Soc., 84, 235241, doi:10.1002/qj.49708436104.

    • Search Google Scholar
    • Export Citation
  • Mertes, S., and Coauthors, 2007: Counterflow virtual impact or based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei: Sampler description and first case study. Aerosol Sci. Technol., 41, 848864, doi:10.1080/02786820701501881.

    • Search Google Scholar
    • Export Citation
  • Murray, B. J., S. L. Broadley, T. W. Wilson, J. D. Atkinson, and R. H. Wills, 2011: Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys., 11, 41914207, doi:10.5194/acp-11-4191-2011.

    • Search Google Scholar
    • Export Citation
  • Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 65196554, doi:10.1039/c2cs35200a.

    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., and Coauthors, 2010: Heterogeneous freezing of droplets with immersed mineral dust particles—Measurements and parameterization. Atmos. Chem. Phys., 10, 36013614, doi:10.5194/acp-10-3601-2010.

    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., R. A. Shaw, S. Hartmann, H. Wex, T. Clauss, J. Voigtlaender, and F. Stratmann, 2011a: Heterogeneous ice nucleation: Exploring the transition from stochastic to singular freezing behavior. Atmos. Chem. Phys., 11, 87678775, doi:10.5194/acp-11-8767-2011.

    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., and Coauthors, 2011b: Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles. Atmos. Chem. Phys., 11, 11 13111 144, doi:10.5194/acp-11-11131-2011.

    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., B. Ervens, T. Clauss, J. Voigtlaender, H. Wex, S. Hartmann, and F. Stratmann, 2014: A computationally efficient description of heterogeneous freezing: A simplified version of the soccer ball model. Geophys. Res. Lett., 41, 736741, doi:10.1002/2013GL058684.

    • Search Google Scholar
    • Export Citation
  • Niedermeier, D., S. Augustin-Bauditz, S. Hartmann, H. Wex, K. Ignatius, and F. Stratmann, 2015: Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation? J. Geophys. Res. Atmos., 120, 50365046, doi:10.1002/2014JD022814.

    • Search Google Scholar
    • Export Citation
  • Niemand, M., and Coauthors, 2012: A particle-surface-area-based parameterization of immersion freezing on desert dust particles. J. Atmos. Sci., 69, 30773092, doi:10.1175/JAS-D-11-0249.1.

    • Search Google Scholar
    • Export Citation
  • Paukert, M., and C. Hoose, 2014: Modeling immersion freezing with aerosol-dependent prognostic ice nuclei in Arctic mixed-phase clouds. J. Geophys. Res. Atmos., 119, 90739092, doi:10.1002/2014JD021917.

    • Search Google Scholar
    • Export Citation
  • Pinti, V., C. Marcolli, B. Zobrist, C. R. Hoyle, and T. Peter, 2012: Ice nucleation efficiency of clay minerals in the immersion mode. Atmos. Chem. Phys., 12, 58595878, doi:10.5194/acp-12-5859-2012.

    • Search Google Scholar
    • Export Citation
  • Pitter, R. L., and H. R. Pruppacher, 1973: Wind-tunnel investigation of freezing of small water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 99, 540550, doi:10.1002/qj.49709942111.

    • Search Google Scholar
    • Export Citation
  • Pratt, K. A., and Coauthors, 2009: In situ detection of biological particles in cloud ice-crystals. Nat. Geosci., 2, 398401, doi:10.1038/ngeo521.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954 pp.

  • Raddatz, M., A. Wiedensohler, H. Wex, and F. Stratmann, 2013: Size selection of sub- and super-micron clay mineral kaolinite particles using a custom-built maxi-DMA. Proc. 19th Int. Conf. on Nucleation and Atmospheric Aerosols, Fort Collins, CO, American Institute of Physics, 457–460.

  • Richardson, M. S., and Coauthors, 2007: Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. J. Geophys. Res., 112, D02209, doi:10.1029/2006JD007500.

    • Search Google Scholar
    • Export Citation
  • Rigg, Y. J., P. A. Alpert, and D. A. Knopf, 2013: Immersion freezing of water and aqueous ammonium sulfate droplets initiated by humic-like substances as a function of water activity. Atmos. Chem. Phys., 13, 66036622, doi:10.5194/acp-13-6603-2013.

    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol., 39, 206221, doi:10.1080/027868290913988.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., P. J. DeMott, J. M. Prospero, and M. R. Poellot, 2003: Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett., 30, 1633, doi:10.1029/2003gl017371.

    • Search Google Scholar
    • Export Citation
  • Seifert, P., and Coauthors, 2010: Saharan dust and heterogeneous ice formation: Eleven years of cloud observations at a central European EARLINET site. J. Geophys. Res., 115, D20201, doi:10.1029/2009JD013222.

    • Search Google Scholar
    • Export Citation
  • Shen, J. H., K. Klier, and A. C. Zettlemoyer, 1977: Ice nucleation by micas. J. Atmos. Sci., 34, 957960, doi:10.1175/1520-0469(1977)034<0957:INBM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stratmann, F., and Coauthors, 2004: Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions. J. Atmos. Oceanic Technol., 21, 876887, doi:10.1175/1520-0426(2004)021<0876:LSANSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sullivan, R., and Coauthors, 2010: Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos. Chem. Phys., 10, 11 47111 487, doi:10.5194/acp-10-11471-2010.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., and M. R. Poellot, 2005: Chemical characteristics of ice residual nuclei in anvil cirrus clouds: Evidence for homogeneous and heterogeneous ice formation. Atmos. Chem. Phys., 5, 22892297, doi:10.5194/acp-5-2289-2005.

    • Search Google Scholar
    • Export Citation
  • Welti, A., F. Lueoend, O. Stetzer, and U. Lohmann, 2009: Influence of particle size on the ice nucleating ability of mineral dusts. Atmos. Chem. Phys., 9, 67056715, doi:10.5194/acp-9-6705-2009.

    • Search Google Scholar
    • Export Citation
  • Welti, A., F. Lueoend, Z. A. Kanji, O. Stetzer, and U. Lohmann, 2012: Time dependence of immersion freezing: An experimental study on size selected kaolinite particles. Atmos. Chem. Phys., 12, 98939907, doi:10.5194/acp-12-9893-2012.

    • Search Google Scholar
    • Export Citation
  • Welti, A., U. Lohmann, and Z. A. Kanji, 2014: Is there a lower size limit for mineral dust ice nuclei in the immersion mode? Geophysical Research Abstracts, Vol. 16, Abstract EGU2014-6722. [Available online at http://meetingorganizer.copernicus.org/EGU2014/EGU2014-6722.pdf.]

  • Westbrook, C. D., and A. J. Illingworth, 2011: Evidence that ice forms primarily in supercooled liquid clouds at temperatures > −27°C. Geophys. Res. Lett., 38, L14808, doi:10.1029/2011GL048021.

    • Search Google Scholar
    • Export Citation
  • Wex, H., and Coauthors, 2014: Kaolinite particles as ice nuclei: Learning from the use of different kaolinite samples and different coatings. Atmos. Chem. Phys., 14, 55295546, doi:10.5194/acp-14-5529-2014.

    • Search Google Scholar
    • Export Citation
  • Yakobi-Hancock, J. D., L. A. Ladino, and J. P. D. Abbatt, 2013: Feldspar minerals as efficient deposition ice nuclei. Atmos. Chem. Phys., 13, 11 17511 185, doi:10.5194/acp-13-11175-2013.

    • Search Google Scholar
    • Export Citation
  • Zobrist, B., T. Koop, B. P. Luo, C. Marcolli, and T. Peter, 2007: Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J. Phys. Chem., 111C, 21492155, doi:10.1021/jp066080w.

    • Search Google Scholar
    • Export Citation
  • Zolles, T., J. Burkart, T. Haeusler, B. Pummer, R. Hitzenberger, and H. Grothe, 2015: Identification of ice nucleation active sites on feldspar dust particles. J. Phys. Chem., 119A, 26922700, doi:10.1021/jp509839x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 734 234 28
PDF Downloads 354 70 8