Systematic Changes in Cloud Radiative Forcing with Aerosol Loading for Deep Clouds in the Tropics

Jie Peng State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, and Shanghai Institute of Meteorological Science, Shanghai Meteorological Bureau, Shanghai, China

Search for other papers by Jie Peng in
Current site
Google Scholar
PubMed
Close
,
Zhanqing Li Earth System Science Interdisciplinary Center, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland, and State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Zhanqing Li in
Current site
Google Scholar
PubMed
Close
,
Hua Zhang Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Hua Zhang in
Current site
Google Scholar
PubMed
Close
,
Jianjun Liu Earth System Science Interdisciplinary Center, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland, and State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Jianjun Liu in
Current site
Google Scholar
PubMed
Close
, and
Maureen Cribb Earth System Science Interdisciplinary Center, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Maureen Cribb in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It has been widely recognized that aerosols can modify cloud properties, but it remains uncertain how much the changes and associated variations in cloud radiative forcing are related to aerosol loading. Using 4 yr of A-Train satellite products generated from CloudSat, the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations satellite, and the Aqua satellite, the authors investigated the systematic changes of deep cloud properties and cloud radiative forcing (CRF) with respect to changes in aerosol loading over the entire tropics. Distinct correlations between CRF and aerosol loading were found. Systematic variations in both shortwave and longwave CRF with increasing aerosol index over oceans and aerosol optical depth over land for mixed-phase clouds were identified, but little change was seen in liquid clouds. The systematic changes are consistent with the microphysical effect and the aerosol invigoration effect. Although this study cannot fully exclude the influence of other factors, attempts were made to explore various possibilities to the extent that observation data available can offer. Assuming that the systematic dependence originates from aerosol effects, changes in CRF with respect to aerosol loading were examined using satellite retrievals. Mean changes in shortwave and longwave CRF from very clean to polluted conditions ranged from −192.84 to −296.63 W m−2 and from 18.95 to 46.12 W m−2 over land, respectively, and from −156.12 to −170.30 W m−2 and from 6.76 to 11.67 W m−2 over oceans, respectively.

Corresponding author address: Prof. Zhanqing Li, Earth System Science Interdisciplinary Center, 5825 University Research Court, Suite 4001, College Park, MD 20740-3823. E-mail: zli@atmos.umd.edu

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Abstract

It has been widely recognized that aerosols can modify cloud properties, but it remains uncertain how much the changes and associated variations in cloud radiative forcing are related to aerosol loading. Using 4 yr of A-Train satellite products generated from CloudSat, the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations satellite, and the Aqua satellite, the authors investigated the systematic changes of deep cloud properties and cloud radiative forcing (CRF) with respect to changes in aerosol loading over the entire tropics. Distinct correlations between CRF and aerosol loading were found. Systematic variations in both shortwave and longwave CRF with increasing aerosol index over oceans and aerosol optical depth over land for mixed-phase clouds were identified, but little change was seen in liquid clouds. The systematic changes are consistent with the microphysical effect and the aerosol invigoration effect. Although this study cannot fully exclude the influence of other factors, attempts were made to explore various possibilities to the extent that observation data available can offer. Assuming that the systematic dependence originates from aerosol effects, changes in CRF with respect to aerosol loading were examined using satellite retrievals. Mean changes in shortwave and longwave CRF from very clean to polluted conditions ranged from −192.84 to −296.63 W m−2 and from 18.95 to 46.12 W m−2 over land, respectively, and from −156.12 to −170.30 W m−2 and from 6.76 to 11.67 W m−2 over oceans, respectively.

Corresponding author address: Prof. Zhanqing Li, Earth System Science Interdisciplinary Center, 5825 University Research Court, Suite 4001, College Park, MD 20740-3823. E-mail: zli@atmos.umd.edu

This article is included in the Aerosol-Cloud-Precipitation-Climate Interaction Special Collection.

Save
  • Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, doi:10.1126/science.1092779.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., D. Rosenfeld, and K. M. Kim, 2009: Weekly cycle of lightning: Evidence of storm invigoration by pollution. Geophys. Res. Lett., 36, L23805, doi:10.1029/2009GL040915.

    • Search Google Scholar
    • Export Citation
  • Camponogara, G., M. A. F. Silva Dias, and G. G. Carrio, 2014: Relationship between Amazon biomass burning aerosols and rainfall over the La Plata Basin. Atmos. Chem. Phys., 14, 43974407, doi:10.5194/acp-14-4397-2014.

    • Search Google Scholar
    • Export Citation
  • Chu, D. A., and Coauthors, 2005: Evaluation of aerosol properties over ocean from Moderate Resolution Imaging Spectroradiometer (MODIS) during ACE-Asia. J. Geophys. Res., 110, D07308, doi:10.1029/2004JD005208.

    • Search Google Scholar
    • Export Citation
  • Fan, J. W., R. Y. Zhang, G. H. Li, and W. K. Tao, 2007: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, D14204, doi:10.1029/2006JD008136.

    • Search Google Scholar
    • Export Citation
  • Fan, J. W., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, doi:10.1029/2009JD012352.

    • Search Google Scholar
    • Export Citation
  • Fan, J. W., D. Rosenfeld, Y. N. Ding, L. R. Leung, and Z. Q. Li, 2012: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys. Res. Lett., 39, L09806, doi:10.1029/2012GL051851.

    • Search Google Scholar
    • Export Citation
  • Fan, J. W., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Q. Li, J. Q. Zhang, and H. R. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, doi:10.1073/pnas.1316830110.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., R. Furrer, P. Pilewskie, L. A. Remer, Q. L. Min, and H. Jonsson, 2006: Aerosol indirect effect studies at Southern Great Plains during the May 2003 Intensive Operations Period. J. Geophys. Res., 111, D05S14, doi:10.1029/2004JD005648.

    • Search Google Scholar
    • Export Citation
  • Freud, E., and D. Rosenfeld, 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207, doi:10.1029/2011JD016457.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., and Coauthors, 2011: Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos. Chem. Phys., 11, 457463, doi:10.5194/acp-11-457-2011.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and A. Pokrovsky, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II: Sensitivity study. J. Atmos. Sci., 61, 29833001, doi:10.1175/JAS-3281.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, doi:10.1256/qj.04.62.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, doi:10.1175/2007JAS2515.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.

    • Search Google Scholar
    • Export Citation
  • Koren, I., J. V. Martins, L. A. Remer, and H. Afargan, 2008: Smoke invigoration versus inhibition of clouds over the Amazon. Science, 321, 946949, doi:10.1126/science.1159185.

    • Search Google Scholar
    • Export Citation
  • Koren, I., L. A. Remer, O. Altaratz, J. V. Martins, and A. David, 2010: Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmos. Chem. Phys., 10, 50015010, doi:10.5194/acp-10-5001-2010.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63, 3641, doi:10.1063/1.3463626.

  • Levy, R. C., L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, 2007: Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res., 112, D13211, doi:10.1029/2006JD007811.

    • Search Google Scholar
    • Export Citation
  • Levy, R. C., L. A. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T. F. Eck, 2010: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys., 10, 10 39910 420, doi:10.5194/acp-10-10399-2010.

    • Search Google Scholar
    • Export Citation
  • Li, Z. Q., F. Niu, K.-H. Lee, J. Y. Xin, W. M. Hao, B. Nordgren, Y. S. Wang, and P. C. Wang, 2007: Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. J. Geophys. Res., 112, D22S07, doi:10.1029/2007JD008479.

    • Search Google Scholar
    • Export Citation
  • Li, Z. Q., F. Niu, J. W. Fan, Y. G. Liu, D. Rosenfeld, and Y. N. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888894, doi:10.1038/ngeo1313.

    • Search Google Scholar
    • Export Citation
  • Lin, J. C., T. Matsui, R. A. Pielke Sr., and C. Kummerow, 2006: Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: A satellite-based empirical study. J. Geophys. Res., 111, D19204, doi:10.1029/2005JD006884.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737, doi:10.5194/acp-5-715-2005.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., G. Y. Wen, J. A. Coakley Jr., L. A. Remer, N. G. Loeb, and R. F. Cahalan, 2008: A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds. J. Geophys. Res., 113, D14S17, doi:10.1029/2007JD009196.

    • Search Google Scholar
    • Export Citation
  • Mi, W., Z. Q. Li, X. G. Xia, B. Holben, R. Levy, F. S. Zhao, H. B. Chen, and M. Cribb, 2007: Evaluation of the Moderate Resolution Imaging Spectroradiometer aerosol products at two Aerosol Robotic Network stations in China. J. Geophys. Res., 112, D22S08, doi:10.1029/2007JD008474.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., A. Higurashi, K. Kawamoto, and J. E. Penner, 2001: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 28, 11711174, doi:10.1029/2000GL012186.

    • Search Google Scholar
    • Export Citation
  • NASA CloudSat Project, 2007: 2B-GEOPROF-LIDAR, 2B-CWC-RVOD, 2B-FLXHR, and ECMWF-AUX, R04. CloudSat Data Processing Center, accessed 1 March 2012. [Available online at http://www.cloudsat.cira.colostate.edu/.]

  • NASA Goddard Space Flight Center, 2008: MYD08, Collection 5.1. Level 1 and Atmosphere Archive and Distribution System, accessed 1 April 2012. [Available online at https://ladsweb.nascom.nasa.gov/data/search.html.]

  • Niu, F., and Z. Q. Li, 2012: Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos. Chem. Phys., 12, 84918498, doi:10.5194/acp-12-8491-2012.

    • Search Google Scholar
    • Export Citation
  • Peng, J., H. Zhang, and Z. Q. Li, 2014: Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations. Adv. Atmos. Sci., 31, 593603, doi:10.1007/s00376-013-3055-6.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 349–416. [Available online at http://www.grida.no/climate/ipcc_tar/wg1/pdf/TAR-06.pdf.]

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., D. B. Parsons, and F. Guichard, 2002: Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE. J. Atmos. Sci., 59, 24382457, doi:10.1175/1520-0469(2002)059<2438:RPAFLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and T. L. Bell, 2011: Why do tornados and hailstorms rest on weekends? J. Geophys. Res., 116, D20211, doi:10.1029/2011JD016214.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Y. J. Kaufman, and I. Koren, 2006: Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols. Atmos. Chem. Phys., 6, 25032511, doi:10.5194/acp-6-2503-2006.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., A. Khain, B. Lynn, and W. L. Woodley, 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys., 7, 34113424, doi:10.5194/acp-7-3411-2007.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008a: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, D. Axisa, E. Freud, J. G. Hudson, and A. Givati, 2008b: Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada. J. Geophys. Res., 113, D15203, doi:10.1029/2007JD009544.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., M. Clavner, and R. Nirel, 2011: Pollution and dust aerosols modulating tropical cyclones intensities. Atmos. Res., 102, 6676, doi:10.1016/j.atmosres.2011.06.006.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. Carrio, I. Ginis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., R. Wood, L. J. Donner, and S. Sherwood, 2013: Aerosol cloud-mediated radiative forcing: Highly uncertain and opposite effects from shallow and deep clouds. Climate Science for Serving Society: Research, Modeling and Prediction Priorities, G. R. Asrar and J. W. Hurrell, Eds., Springer, 105–149, doi:10.1007/978-94-007-6692-1_5.

  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 6782, doi:10.1007/s00703-005-0113-3.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. M. Gabriel, and P. T. Partain, 2001: Parameterization of atmospheric radiative transfer. Part I: Validity of simple models. J. Atmos. Sci., 58, 33913409, doi:10.1175/1520-0469(2001)058<3391:POARTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Storer, R. L., S. C. Van den Heever, and T. S. L’Ecuyer, 2014: Observations of aerosol-induced convective invigoration in the tropical east Atlantic. J. Geophys. Res. Atmos., 119, 39633975, doi:10.1002/2013JD020272.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nakajima, O. Dubovik, B. N. Holben, and S. Kinne, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate, 15, 333352, doi:10.1175/1520-0442(2002)015<0333:SSAARF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., X. W. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., J. P. Chen, Z. Q. Li, C. E. Wang, and C. D. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369.

    • Search Google Scholar
    • Export Citation
  • Ten Hoeve, J. E., M. Z. Jacobson, and L. A. Remer, 2012: Comparing results from a physical model with satellite and in situ observations to determine whether biomass burning aerosols over the Amazon brighten or burn off clouds. J. Geophys. Res., 117, D08203, doi:10.1029/2011JD016856.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci., 68, 699718, doi:10.1175/2010JAS3603.1.

    • Search Google Scholar
    • Export Citation
  • Varnai, T., and M. Alexander, 2011: Global CALIPSO observations of aerosol changes near clouds. IEEE Trans. Geosci. Remote Sens., 8, 1923, doi:10.1109/LGRS.2010.2049982.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., 110, D21211, doi:10.1029/2004JD005720.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., R. Y. Zhang, and R. Saravanan, 2014: Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nat. Commun., 5, 3098, doi:10.1038/ncomms4098.

    • Search Google Scholar
    • Export Citation
  • Wen, G. Y., A. Marshak, R. F. Cahalan, L. A. Remer, and R. G. Kleidman, 2007: 3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J. Geophys. Res., 112, D13204, doi:10.1029/2006JD008267.

    • Search Google Scholar
    • Export Citation
  • Yan, H. R., Z. Q. Li, J. P. Huang, M. Cribb, and J. J. Liu, 2014: Long-term aerosol-mediated changes in cloud radiative forcing of deep clouds at the top and bottom of the atmosphere over the Southern Great Plains. Atmos. Chem. Phys., 14, 71137124, doi:10.5194/acp-14-7113-2014.

    • Search Google Scholar
    • Export Citation
  • Yang, W. D., A. Marshak, T. Várnai, and Z. Y. Liu, 2012: Effect of CALIPSO cloud–aerosol discrimination (CAD) confidence levels on observations of aerosol properties near clouds. Atmos. Res., 116, 134141, doi:10.1016/j.atmosres.2012.03.013.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and Z. Q. Li, 2014: Increases in thunderstorm activity and relationships with air pollution in southeast China. J. Geophys. Res. Atmos., 119, 18351844, doi:10.1002/2013JD021224.

    • Search Google Scholar
    • Export Citation
  • Yang, X., M. Ferrat, and Z. Q. Li, 2013a: New evidence of orographic precipitation suppression by aerosols in central China. Meteor. Atmos. Phys., 119, 1729, doi:10.1007/s00703-012-0221-9.

    • Search Google Scholar
    • Export Citation
  • Yang, X., Z. Y. Yao, Z. Q. Li, and T. Y. Fan, 2013b: Heavy air pollution suppresses summer thunderstorms in central China. J. Atmos. Sol.-Terr. Phys., 95–96, 2840, doi:10.1016/j.jastp.2012.12.023.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1091 500 29
PDF Downloads 314 91 10