• Andreas, E. L, 1987: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound.-Layer Meteor., 38, 159184, doi:10.1007/BF00121562.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 1989: Thermal and size evolution of sea spray droplets. U.S. Army Cold Regions Research and Engineering Laboratory Rep. 89-11, 37 pp.

  • Andreas, E. L, 1990: Time constants for the evolution of sea spray droplets. Tellus, 42B, 481497, doi:10.1034/j.1600-0889.1990.t01-3-00007.x.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 1992: Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res., 97, 11 42911 441, doi:10.1029/92JC00876.

  • Andreas, E. L, 1995: The temperature of evaporating sea spray droplets. J. Atmos. Sci., 52, 852862, doi:10.1175/1520-0469(1995)052<0852:TTOESS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 1996: Reply. J. Atmos. Sci., 53, 16421645, doi:10.1175/1520-0469(1996)053<1642:R>2.0.CO;2.

  • Andreas, E. L, 2002: A review of the sea spray generation function for the open ocean. Atmosphere-Ocean Interactions, Vol. 1, W. A. Perrie, Ed., WIT Press, 1–46.

  • Andreas, E. L, 2005a: Approximation formulas for the microphysical properties of saline droplets. Atmos. Res., 75, 323345, doi:10.1016/j.atmosres.2005.02.001.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2005b: Handbook of physical constants and functions for use in atmospheric boundary layer studies. ERDC/CRREL Monograph M-05-1, 42 pp.

  • Andreas, E. L, 2010: Spray-mediated enthalpy flux to the atmosphere and salt flux to the ocean in high winds. J. Phys. Oceanogr., 40, 608619, doi:10.1175/2009JPO4232.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , and J. DeCosmo, 1999: Sea spray production and influence on air-sea heat and moisture fluxes over the open ocean. Air-Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer, 327–362.

  • Andreas, E. L, , and G. Treviño, 2000: Comments on “A physical interpretation of von Kármán’s constant based on asymptotic considerations—A new value.” J. Atmos. Sci., 57, 11891192, doi:10.1175/1520-0469(2000)057<1189:COAPIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751, doi:10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , and J. DeCosmo, 2002: The signature of sea spray in the HEXOS turbulent heat flux data. Bound.-Layer Meteor., 103, 303333, doi:10.1023/A:1014564513650.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , and S. Wang, 2007: Predicting significant wave height off the northeast coast of the United States. Ocean Eng., 34, 13281335, doi:10.1016/j.oceaneng.2006.08.004.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , J. B. Edson, , E. C. Monahan, , M. P. Rouault, , and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72, 352, doi:10.1007/BF00712389.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , P. O. G. Persson, , and J. E. Hare, 2008: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr., 38, 15811596, doi:10.1175/2007JPO3813.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , K. F. Jones, , and C. W. Fairall, 2010: Production velocity of sea spray droplets. J. Geophys. Res., 115, C12065, doi:10.1029/2010JC006458.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , L. Mahrt, , and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, doi:10.1175/JAS-D-11-0312.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , L. Mahrt, , and D. Vickers, 2015: An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., 141, 642654, doi:10.1002/qj.2424.

    • Search Google Scholar
    • Export Citation
  • Anguelova, M., , R. P. Barber Jr., , and J. Wu, 1999: Spume drops produced by the wind tearing of wave crests. J. Phys. Oceanogr., 29, 11561165, doi:10.1175/1520-0485(1999)029<1156:SDPBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bortkovskii, R. S., 1987: Air-Sea Exchange of Heat and Moisture during Storms. D. Reidel, 194 pp.

  • Brunke, M. A., , X. Zeng, , and S. Anderson, 2002: Uncertainties in sea surface turbulent flux algorithms and data sets. J. Geophys. Res., 107, 3141, doi:10.1029/2001JC000992.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W. H., 1982: Evaporation into the Atmosphere: Theory, History, and Applications. D. Reidel, 299 pp.

  • Businger, J. A., 1982: The fluxes of specific enthalpy, sensible heat and latent heat near the Earth’s surface. J. Atmos. Sci., 39, 18891892, doi:10.1175/1520-0469(1982)039<1889:TFOSES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, H.-R., , and R. L. Grossman, 1999: Evaluation of bulk surface flux algorithms for light wind conditions using data from the Coupled Ocean-Atmosphere Response Experiment (COARE). Quart. J. Roy. Meteor. Soc., 125, 15511588, doi:10.1002/qj.49712555705.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , B. K. Haus, , N. Reul, , W. J. Plant, , M. Stiassnie, , H. C. Graber, , O. B. Brown, , and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., , and C. W. Fairall, 1994: Spray droplet modeling: 1. Lagrangian model simulation of the turbulent transport of evaporating droplets. J. Geophys. Res., 99, 25 29525 311, doi:10.1029/94JC01883.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., , S. Anquentin, , P. G. Mestayer, , and J. F. Sini, 1996: Spray droplet modeling: 2. An interactive Eulerian-Lagrangian model of evaporating spray droplets. J. Geophys. Res., 101, 12791293, doi:10.1029/95JC03280.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , and S. E. Larsen, 1984: Dry deposition, surface production and dynamics of aerosols in the marine boundary layer. Atmos. Environ., 18, 6977, doi:10.1016/0004-6981(84)90229-4.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , J. B. Edson, , and M. A. Miller, 1990: Heat fluxes, whitecaps, and sea spray. Surface Waves and Fluxes, Vol. 1, G. L. Geernaert and W. J. Plant, Eds., Kluwer, 173–208.

  • Fairall, C. W., , J. D. Kepert, , and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , M. L. Banner, , W. L. Peirson, , W. Asher, , and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, doi:10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Grant, A. L. M., , and P. Hignett, 1998: Aircraft observations of the surface energy balance in TOGA-COARE. Quart. J. Roy. Meteor. Soc., 124, 101122, doi:10.1002/qj.49712454505.

    • Search Google Scholar
    • Export Citation
  • Haus, B. K., , D. Jeong, , M. A. Donelan, , J. A. Zhang, , and I. Savelyev, 2010: Relative rates of sea-air heat transfer and frictional drag in very high winds. Geophys. Res. Lett., 37, L07802, doi:10.1029/2009GL042206.

    • Search Google Scholar
    • Export Citation
  • Jeong, D., , B. K. Haus, , and M. A. Donelan, 2012: Enthalpy transfer across the air–water interface in high winds including spray. J. Atmos. Sci., 69, 27332748, doi:10.1175/JAS-D-11-0260.1.

    • Search Google Scholar
    • Export Citation
  • Jones, K. F., , and E. L Andreas, 2012: Sea spray concentrations and the icing of fixed offshore structures. Quart. J. Roy. Meteor. Soc., 138, 131144, doi:10.1002/qj.897.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., , S. D. Smith, , and W. A. Oost, 1987: HEXOS—Humidity Exchange over the Sea: A program for research on water-vapor and droplet fluxes from sea to air at moderate to high wind speeds. Bull. Amer. Meteor. Soc., 68, 466476, doi:10.1175/1520-0477(1987)068<0466:HEOTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 1996: Comments on “The temperature of evaporating sea spray droplets.” J. Atmos. Sci., 53, 16341641, doi:10.1175/1520-0469(1996)053<1634:COTOES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koga, M., 1981: Direct production of droplets from breaking wind-waves—Its observation by a multi-colored overlapping exposure photographing technique. Tellus, 33, 552563, doi:10.1111/j.2153-3490.1981.tb01781.x.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., , and J. A. Businger, 1994: Atmosphere-Ocean Interaction. 2nd ed. Oxford University Press, 362 pp.

  • Lai, R. J., , and O. H. Shemdin, 1974: Laboratory study of the generation of spray over water. J. Geophys. Res., 79, 30553063, doi:10.1029/JC079i021p03055.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., , K. B. Katsaros, , and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, doi:10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Massel, S. R., 2007: Ocean Waves Breaking and Marine Aerosol Fluxes. Springer, 323 pp.

  • Mestayer, P. G., , and C. Lefauconnier, 1988: Spray droplet generation, transport, and evaporation in a wind wave tunnel during the Humidity Exchange over the Sea Experiments in the Simulation Tunnel. J. Geophys. Res., 93, 572586, doi:10.1029/JC093iC01p00572.

    • Search Google Scholar
    • Export Citation
  • Mestayer, P. G., , J. B. Edson, , C. W. Fairall, , S. E. Larsen, , and D. E. Spiel, 1989: Turbulent transport and evaporation of droplets generated at an air-water interface. Turbulent Shear Flows 6, J.-C. André et al., Eds., Springer-Verlag, 129–147.

  • Mestayer, P. G., , A. M. J. Van Eijk, , G. de Leeuw, , and B. Tranchant, 1996: Numerical simulation of the dynamics of sea spray over the waves. J. Geophys. Res., 101, 20 77120 797, doi:10.1029/96JC01425.

    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., , D. E. Spiel, , and K. L. Davidson, 1986: A model of marine aerosol generation via whitecaps and wave disruption. Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, E. C. Monahan and G. Mac Niocaill, Eds., D. Reidel, 167–174.

  • Montgomery, M. T., , R. K. Smith, , and S. V. Nguyen, 2010: Sensitivity of tropical cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136, 19451953, doi:10.1002/qj.702.

    • Search Google Scholar
    • Export Citation
  • Montgomery, R. B., 1940: Observations of vertical humidity distribution above the ocean surface and their relation to evaporation. Woods Hole Oceanographic Institution Papers in Physical Oceanography and Meteorology, Vol. 7, No. 4, 30 pp.

  • Moore, D. J., , and B. J. Mason, 1954: The concentration, size distribution and production rate of large salt nuclei over the oceans. Quart. J. Roy. Meteor. Soc., 80, 583590, doi:10.1002/qj.49708034607.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., , and F. Veron, 2014: Impact of sea spray on air–sea fluxes. Part I: Results from stochastic simulations of sea spray drops over the ocean. J. Phys. Oceanogr., 44, 28172834, doi:10.1175/JPO-D-13-0245.1.

    • Search Google Scholar
    • Export Citation
  • Okuda, S., , and S. Hayami, 1959: Experiments on evaporation from wavy water surface. Rec. Oceanogr. Works Japan, 5, 613.

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richter, D. H., , and D. P. Stern, 2014: Evidence of spray-mediated air-sea enthalpy flux within tropical cyclones. Geophys. Res. Lett., 41, 29973003, doi:10.1002/2014GL059746.

    • Search Google Scholar
    • Export Citation
  • Rouault, M. P., , P. G. Mestayer, , and R. Schiestel, 1991: A model of evaporating spray droplet dispersion. J. Geophys. Res., 96, 71817200, doi:10.1029/90JC02569.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., , K. B. Katsaros, , W. A. Oost, , and P. G. Mestayer, 1996: The impact of the HEXOS programme. Bound.-Layer Meteor., 78, 121141, doi:10.1007/BF00122489.

    • Search Google Scholar
    • Export Citation
  • Toba, Y., 1965: On the giant sea-salt particles in the atmosphere: II. Theory of the vertical distribution in the 10-m layer over the ocean. Tellus, 17, 365382, doi:10.1111/j.2153-3490.1965.tb01429.x.

    • Search Google Scholar
    • Export Citation
  • Tucker, M. J., , and E. G. Pitt, 2001: Waves in Ocean Engineering. Elsevier, 521 pp.

  • Veron, F., 2015: Ocean spray. Annu. Rev. Fluid Mech., 47, 507538, doi:10.1146/annurev-fluid-010814-014651.

  • Veron, F., , C. Hopkins, , E. L. Harrison, , and J. A. Mueller, 2012: Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett., 39, L16602, doi:10.1029/2012GL052603.

    • Search Google Scholar
    • Export Citation
  • Wang, C. S., , and R. L. Street, 1978a: Measurements of spray at an air-water interface. Dyn. Atmos. Oceans, 2, 141152, doi:10.1016/0377-0265(78)90007-6.

    • Search Google Scholar
    • Export Citation
  • Wang, C. S., , and R. L. Street, 1978b: Transfer across an air-water interface at high wind speeds: The effect of spray. J. Geophys. Res., 83, 29592969, doi:10.1029/JC083iC06p02959.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1973: Spray in the atmospheric surface layer: Laboratory study. J. Geophys. Res., 78, 511519, doi:10.1029/JC078i003p00511.

  • Wu, J., 1974: Evaporation due to spray. J. Geophys. Res., 79, 41074109, doi:10.1029/JC079i027p04107.

  • Zilitinkevich, S. S., , A. A. Grachev, , and C. W. Fairall, 2001: Scaling reasoning and field data on the sea surface roughness lengths for scalars. J. Atmos. Sci., 58, 320325, doi:10.1175/1520-0469(2001)058<0320:NACRAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 1
PDF Downloads 10 10 0

On the Prospects for Observing Spray-Mediated Air–Sea Transfer in Wind–Water Tunnels

View More View Less
  • 1 NorthWest Research Associates, Inc., Lebanon, New Hampshire
  • | 2 NorthWest Research Associates, Inc., Corvallis, Oregon
© Get Permissions
Restricted access

Abstract

Nature is wild, unconstrained, and often dangerous. In particular, studying air–sea interaction in winds typical of tropical cyclones can place researchers, their instruments, and even their research platforms in jeopardy. As an alternative, laboratory wind–water tunnels can probe 10-m equivalent winds of hurricane strength under conditions that are well constrained and place no personnel or equipment at risk. Wind–water tunnels, however, cannot simulate all aspects of air–sea interaction in high winds. The authors use here the comprehensive data from the Air–Sea Interaction Salt Water Tank (ASIST) wind–water tunnel at the University of Miami that Jeong, Haus, and Donelan published in this journal to demonstrate how spray-mediated processes are different over the open ocean and in wind tunnels. A key result is that, at all high-wind speeds, the ASIST tunnel was able to quantify the so-called interfacial air–sea enthalpy flux—the flux controlled by molecular processes right at the air–water interface. This flux cannot be measured in high winds over the open ocean because the ubiquitous spray-mediated enthalpy transfer confounds the measurements. The resulting parameterization for this interfacial flux has implications for modeling air–sea heat fluxes from moderate winds to winds of hurricane strength.

Deceased.

Corresponding author address: Larry Mahrt, NorthWest Research Associates, P.O. Box 3027, Bellevue, WA 98009-3027. E-mail: mahrt@nwra.com

Denotes Chemistry/Aerosol content

Abstract

Nature is wild, unconstrained, and often dangerous. In particular, studying air–sea interaction in winds typical of tropical cyclones can place researchers, their instruments, and even their research platforms in jeopardy. As an alternative, laboratory wind–water tunnels can probe 10-m equivalent winds of hurricane strength under conditions that are well constrained and place no personnel or equipment at risk. Wind–water tunnels, however, cannot simulate all aspects of air–sea interaction in high winds. The authors use here the comprehensive data from the Air–Sea Interaction Salt Water Tank (ASIST) wind–water tunnel at the University of Miami that Jeong, Haus, and Donelan published in this journal to demonstrate how spray-mediated processes are different over the open ocean and in wind tunnels. A key result is that, at all high-wind speeds, the ASIST tunnel was able to quantify the so-called interfacial air–sea enthalpy flux—the flux controlled by molecular processes right at the air–water interface. This flux cannot be measured in high winds over the open ocean because the ubiquitous spray-mediated enthalpy transfer confounds the measurements. The resulting parameterization for this interfacial flux has implications for modeling air–sea heat fluxes from moderate winds to winds of hurricane strength.

Deceased.

Corresponding author address: Larry Mahrt, NorthWest Research Associates, P.O. Box 3027, Bellevue, WA 98009-3027. E-mail: mahrt@nwra.com

Denotes Chemistry/Aerosol content

Save