• Abarca, S. F., , and M. T. Montgomery, 2014: Departures from axisymmetric balance dynamics during secondary eyewall formation. J. Atmos. Sci., 71, 37233738, doi:10.1175/JAS-D-14-0018.1.

    • Search Google Scholar
    • Export Citation
  • Abarca, S. F., , and M. T. Montgomery, 2015: Are eyewall replacement cycles governed largely by axisymmetric balance dynamics? J. Atmos. Sci., 72, 8287, doi:10.1175/JAS-D-14-0151.1.

    • Search Google Scholar
    • Export Citation
  • Bui, H. H., , R. K. Smith, , M. T. Montgomery, , and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, doi:10.1002/qj.502.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.

    • Search Google Scholar
    • Export Citation
  • Guinn, T. A., , and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 33803403, doi:10.1175/1520-0469(1993)050<3380:HSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., , and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, doi:10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , and W. H. Schubert, 2010: Adiabatic rearrangement of hollow PV towers. J. Adv. Model. Earth Syst., 2 (8), doi:10.3894/JAMES.2010.2.8.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , M. T. Montgomery, , and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , W. H. Schubert, , R. K. Taft, , H. Wang, , and J. P. Kossin, 2009: Life cycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705722, doi:10.1175/2008JAS2820.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., , W. H. Schubert, , Y.-H. Chen, , H.-C. Kuo, , and M. S. Peng, 2014: Hurricane eyewall evolution in a forced shallow-water model. J. Atmos. Sci., 71, 16231643, doi:10.1175/JAS-D-13-0303.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , J. Dudhia, , and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., , M. T. Montgomery, , and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674, doi:10.1175/JAS-D-11-0114.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP MESO model. NOAA/NWS/NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Atmos. Sci., 15, 9197, doi:10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, doi:10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, doi:10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., , and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56, 16741687, doi:10.1175/1520-0469(1999)056<1674:VRWAHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, doi:10.1002/qj.49712353810.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., , M. E. Nicholls, , T. A. Cram, , and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., , and D. A. Schecter, 2014: Evaluation of the impact of moist convection on the development of asymmetric inner core instabilities in simulated tropical cyclones. J. Adv. Model. Earth Syst., 6, 10271048, doi:10.1002/2014MS000366.

    • Search Google Scholar
    • Export Citation
  • Nguyen, M. C., , M. J. Reeder, , N. E. Davidson, , R. K. Smith, , and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Quart. J. Roy. Meteor. Soc., 137, 829844, doi:10.1002/qj.823.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., , and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, doi:10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , J. P. Kossin, , W. H. Schubert, , and P. J. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133147, doi:10.1175/2008JAS2717.1.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., , D. S. Nolan, , J. P. Kossin, , F. Zhang, , and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 26212643, doi:10.1175/JAS-D-11-0326.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , and J. J. Hack, 1983: Transformed Eliassen balanced vortex model. J. Atmos. Sci., 40, 15711583, doi:10.1175/1520-0469(1983)040<1571:TEBVM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , M. T. Montgomery, , R. K. Taft, , T. A. Guinn, , S. R. Fulton, , J. P. Kossin, , and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., , and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Van Sang, N., , R. K. Smith, , and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, doi:10.1002/qj.235.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, doi:10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, doi:10.1007/s00703-003-0055-6.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., , J. A. Clos, , and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., , H.-J. Cheng, , Y. Wang, , and K.-H. Chou, 2009: A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 2140, doi:10.1175/2008MWR2516.1.

    • Search Google Scholar
    • Export Citation
  • Yau, M. K., , Y. Liu, , D.-L. Zhang, , and Y. Chen, 2004: A multiscale numerical study of Hurricane Andrew (1992). Part VI: Small-scale inner-core structures and wind streaks. Mon. Wea. Rev., 132, 14101433, doi:10.1175/1520-0493(2004)132<1410:AMNSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 14
PDF Downloads 81 81 15

The Role of Convective Heating in Tropical Cyclone Eyewall Ring Evolution

View More View Less
  • 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 2 Naval Postgraduate School, Monterey, California
© Get Permissions
Restricted access

Abstract

The purpose of this study is to analyze the role of diabatic heating in tropical cyclone ring structure evolution. A full-physics three-dimensional modeling framework is used to compare the results with two-dimensional modeling approaches and to point to limitations of the barotropic instability theory in predicting the storm vorticity structure configuration. A potential vorticity budget analysis reveals that diabatic heating is a leading-order term and that it is largely offset by potential vorticity advection. Sawyer–Eliassen integrations are used to diagnose the secondary circulation (and corresponding vorticity tendency) forced by prescribed heating. These integrations suggest that diabatic heating forces a secondary circulation (and associated vorticity tendency) that helps maintain the original ring structure in a feedback process. Sensitivity experiments of the Sawyer–Eliassen model reveal that the magnitude of the vorticity tendency is proportional to that of the prescribed heating, indicating that diabatic heating plays a critical role in adjusting and maintaining the eyewall ring.

Corresponding author address: Chun-Chieh Wu, Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. E-mail: cwu@typhoon.as.ntu.edu.tw

Abstract

The purpose of this study is to analyze the role of diabatic heating in tropical cyclone ring structure evolution. A full-physics three-dimensional modeling framework is used to compare the results with two-dimensional modeling approaches and to point to limitations of the barotropic instability theory in predicting the storm vorticity structure configuration. A potential vorticity budget analysis reveals that diabatic heating is a leading-order term and that it is largely offset by potential vorticity advection. Sawyer–Eliassen integrations are used to diagnose the secondary circulation (and corresponding vorticity tendency) forced by prescribed heating. These integrations suggest that diabatic heating forces a secondary circulation (and associated vorticity tendency) that helps maintain the original ring structure in a feedback process. Sensitivity experiments of the Sawyer–Eliassen model reveal that the magnitude of the vorticity tendency is proportional to that of the prescribed heating, indicating that diabatic heating plays a critical role in adjusting and maintaining the eyewall ring.

Corresponding author address: Chun-Chieh Wu, Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan. E-mail: cwu@typhoon.as.ntu.edu.tw
Save