• Beron-Vera, F. J., , M. J. Olascoaga, , M. G. Brown, , H. Koçak, , and I. I. Rypina, 2010: Invariant-tori-like Lagrangian coherent structures in geophysical flows. Chaos, 20, 017514, doi:10.1063/1.3271342.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 1993: Barotropic simulation of large-scale mixing in the Antarctic polar vortex. J. Atmos. Sci., 50, 29012914, doi:10.1175/1520-0469(1993)050<2901:BSOLSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., 1996: Rossby wave phase speeds and mixing barriers in the stratosphere. Part I: Observations. J. Atmos. Sci., 53, 905916, doi:10.1175/1520-0469(1996)053<0905:RWPSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and P. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., , A. M. Mancho, , K. Ide, , E. Serrano, , and C. R. Mechoso, 2012: Routes of transport across the Antarctic polar vortex in the southern spring. J. Atmos. Sci., 69, 741752, doi:10.1175/JAS-D-11-0142.1.

    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., , C. R. Mechoso, , A. M. Mancho, , E. Serrano, , and K. Ide, 2013: Isentropic transport within the Antarctic polar-night vortex: Rossby wave breaking evidence and Lagrangian structures. J. Atmos. Sci., 70, 29823001, doi:10.1175/JAS-D-12-0274.1.

    • Search Google Scholar
    • Export Citation
  • del-Castillo-Negrete, D., , and P. Morrison, 1993: Chaotic transport by Rossby waves in shear flow. Phys. Fluids, 5A, 948965, doi:10.1063/1.858639.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., 2005: Stratospheric dynamics. Annu. Rev. Fluid Mech., 37, 263293, doi:10.1146/annurev.fluid.37.061903.175710.

  • Heikes, R. P., , and D. A. Randall, 1995a: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: Basic design and results of tests. Mon. Wea. Rev., 123, 18621880, doi:10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heikes, R. P., , and D. A. Randall, 1995b: Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part II: A detailed description of the grid and an analysis of numerical accuracy. Mon. Wea. Rev., 123, 18811887, doi:10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heikes, R. P., , D. A. Randall, , and C. S. Konor, 2013: Optimized icosahedral grids: Performance of finite-difference operators and multigrid solver. Mon. Wea. Rev., 141, 44504469, doi:10.1175/MWR-D-12-00236.1.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., and et al. , 2007: Stratéole/vorcore—Long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter. J. Atmos. Oceanic Technol., 24, 20482061, doi:10.1175/2007JTECHA948.1.

    • Search Google Scholar
    • Export Citation
  • Hio, Y., , and S. Yoden, 2004: Quasi-periodic variations of the polar vortex in the Southern Hemisphere stratosphere due to wave–wave interaction. J. Atmos. Sci., 61, 25102527, doi:10.1175/JAS3257.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez Madrid, J. A., , and A. M. Mancho, 2009: Distinguished trajectories in time dependent vector fields. Chaos, 19, 013111, doi:10.1063/1.3056050.

    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., 1989: A shallow water model of the winter stratosphere. J. Atmos. Sci., 46, 29342956, doi:10.1175/1520-0469(1989)046<2934:ASWMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., , and M. E. McIntyre, 1987: A high-resolution one-layer model of breaking planetary waves in the stratosphere. Nature, 328, 590596, doi:10.1038/328590a0.

    • Search Google Scholar
    • Export Citation
  • Koh, T.-Y., , and R. A. Plumb, 2000: Lobe dynamics applied to barotropic Rossby-wave breaking. Phys. Fluids, 12, 15181528, doi:10.1063/1.870400.

    • Search Google Scholar
    • Export Citation
  • Koh, T.-Y., , and B. Legras, 2002: Hyperbolic lines and the stratospheric polar vortex. Chaos, 12, 382394, doi:10.1063/1.1480442.

  • Lopesino, C., , F. Balibrea, , S. Wiggins, , and A. M. Mancho, 2015: Lagrangian descriptors for two dimensional, area preserving, autonomous and nonautonomous maps. Commun. Nonlinear Sci. Numer. Simul., 27, 4051, doi:10.1016/j.cnsns.2015.02.022.

    • Search Google Scholar
    • Export Citation
  • Mancho, A. M., , S. Wiggins, , J. Curbelo, , and C. Mendoza, 2013: Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems. Commun. Nonlinear Sci. Numer. Simul., 18, 35303557, doi:10.1016/j.cnsns.2013.05.002.

    • Search Google Scholar
    • Export Citation
  • Manney, G., , J. Farrara, , and C. Mechoso, 1991: The behavior of wave 2 in the Southern Hemisphere stratosphere during late winter and early spring. J. Atmos. Sci., 48, 976998, doi:10.1175/1520-0469(1991)048<0976:TBOWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., , and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, doi:10.1038/305593a0.

  • McIntyre, M. E., , and T. N. Palmer, 1984: The ‘surf zone’ in the stratosphere. J. Atmos. Terr. Phys., 46, 825849, doi:10.1016/0021-9169(84)90063-1.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., , and T. N. Palmer, 1985: A note on the general concept of wave breaking for Rossby and gravity waves. Pure Appl. Geophys., 123, 964975, doi:10.1007/BF00876984.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., , A. O’Neill, , V. D. Pope, , and J. D. Farrara, 1988: A study of the stratospheric final warming of 1982 in the southern hemisphere. Quart. J. Roy. Meteor. Soc., 114, 13651384, doi:10.1002/qj.49711448402.

    • Search Google Scholar
    • Export Citation
  • Mendoza, C., , and A. M. Mancho, 2010: Hidden geometry of ocean flows. Phys. Rev. Lett., 105, 038501, doi:10.1103/PhysRevLett.105.038501.

  • Mendoza, C., , and A. M. Mancho, 2012: Review article: “The Lagrangian description of aperiodic flows: A case study of the Kuroshio Current,” Nonlinear Processes Geophys., 19, 449472, doi:10.5194/npg-19-449-2012.

    • Search Google Scholar
    • Export Citation
  • Mizuta, R., , and S. Yoden, 2001: Chaotic mixing and transport barriers in an idealized stratospheric polar vortex. J. Atmos. Sci., 58, 26162629, doi:10.1175/1520-0469(2001)058<2616:CMATBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., , and R. A. Plumb, 1994: The effects of flow asymmetry on the direction of Rossby wave breaking. J. Atmos. Sci., 51, 20312045, doi:10.1175/1520-0469(1994)051<2031:TEOFAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ngan, K., , and T. G. Shepherd, 1997: Chaotic mixing and transport in Rossby-wave critical layers. J. Fluid Mech., 334, 315351, doi:10.1017/S0022112096004363.

    • Search Google Scholar
    • Export Citation
  • Ngan, K., , and T. G. Shepherd, 1999: A closer look at chaotic advection in the stratosphere. Part I: Geometric structure. J. Atmos. Sci., 56, 41344152, doi:10.1175/1520-0469(1999)056<4134:ACLACA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Olascoaga, M., and et al. , 2013: Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett., 40, 61716175, doi:10.1002/2013GL058624.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1991a: Chaotic mixing of tracer and vorticity by modulated traveling Rossby waves. Geophys. Astrophys. Fluid Dyn., 58, 285319, doi:10.1080/03091929108227343.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 1991b: Large-scale horizontal mixing in planetary atmospheres. Phys. Fluids, 3A, 12501260, doi:10.1063/1.858053.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , D. W. Waugh, , and R. A. Plumb, 1995: On the subtropical edge of the stratospheric surf zone. J. Atmos. Sci., 52, 12881309, doi:10.1175/1520-0469(1995)052<1288:OTSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Quintanar, A. I., , and C. R. Mechoso, 1995: Quasi-stationary waves in the Southern Hemisphere. Part I: Observational data. J. Climate, 8, 26592672, doi:10.1175/1520-0442(1995)008<2659:QSWITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., and et al. , 2010: The Concordiasi project in Antarctica. Bull. Amer. Meteor. Soc., 91, 6986, doi:10.1175/2009BAMS2764.1.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1994: Geostrophic adjustment and the finite-difference shallow-water equations. Mon. Wea. Rev., 122, 13711377, doi:10.1175/1520-0493(1994)122<1371:GAATFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rong, P.-P., , and D. W. Waugh, 2004: Vacillations in a shallow-water model of the stratosphere. J. Atmos. Sci., 61, 11741185, doi:10.1175/1520-0469(2004)061<1174:VIASMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rypina, I., , M. Brown, , F. Beron-Vera, , H. Koçak, , M. Olascoaga, , and I. Udovydchenkov, 2007: On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J. Atmos. Sci., 64, 35953610, doi:10.1175/JAS4036.1.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., , and S. Wiggins, 2006: Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach. Interdisciplinary Applied Mathematics, Vol. 31, Springer, 150 pp.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2007: Transport in the middle atmosphere. J. Meteor. Soc. Japan, 85B, 165191, doi:10.2151/jmsj.85B.165.

  • Stewartson, K., 1977: The evolution of the critical layer of a Rossby wave. Geophys. Astrophys. Fluid Dyn., 9, 185200, doi:10.1080/03091927708242326.

    • Search Google Scholar
    • Export Citation
  • Warn, T., , and H. Warn, 1978: The evolution of a nonlinear critical level. Stud. Appl. Math., 59, 3771, doi:10.1002/sapm197859137.

  • Wiggins, S., 1992: Interdisciplinary Applied Mathematics. Vol. 2, Chaotic Transport in Dynamical Systems, Springer, 301 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 5
PDF Downloads 22 22 6

Modeling Rossby Wave Breaking in the Southern Spring Stratosphere

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 2 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Rossby wave breaking (RWB) plays a central role in the evolution of stratospheric flows. The generation and evolution of RWB is examined in the simple dynamical framework of a one-layer shallow-water system on a sphere. The initial condition represents a realistic, zonally symmetric velocity profile corresponding to the springtime southern stratosphere. Single zonal wavenumber Rossby waves, which are either stationary or traveling zonally with realistic speeds, are superimposed on the initial velocity profile. Particular attention is placed on the Lagrangian structures associated with RWB. The Lagrangian analysis is based on the calculation of trajectories and the application of a diagnostic tool known as the “M” function. Hyperbolic trajectories (HTs), produced by the transverse intersections of stable and unstable invariant manifolds, may yield chaotic saddles in M. Previous studies associated HTs with “cat’s eyes” generated by planetary wave breaking at the critical levels. HTs, and hence RWB, are found both outside and inside the stratospheric polar vortex (SPV). Significant findings are as follows: (i) stationary forcing produces HTs only outside of the SPV and (ii) eastward-traveling wave forcing can produce HTs both outside and inside of the SPV. In either case, HTs appear at or near the critical latitudes. RWB was found to occur inside the SPV even when the forcing was located completely outside. In all cases, the westerly jet remained impermeable throughout the simulations. The results suggest that the HT inside the SPV observed by de la Cámara et al. during the southern spring 2005 was due to RWB of an eastward-traveling wave of wavenumber 1.

Current affiliation: Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.

Corresponding author address: Dr. Anirban Guha, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, SL 109, Kanpur 208016 UP, India. E-mail: anirbanguha.ubc@gmail.com

Abstract

Rossby wave breaking (RWB) plays a central role in the evolution of stratospheric flows. The generation and evolution of RWB is examined in the simple dynamical framework of a one-layer shallow-water system on a sphere. The initial condition represents a realistic, zonally symmetric velocity profile corresponding to the springtime southern stratosphere. Single zonal wavenumber Rossby waves, which are either stationary or traveling zonally with realistic speeds, are superimposed on the initial velocity profile. Particular attention is placed on the Lagrangian structures associated with RWB. The Lagrangian analysis is based on the calculation of trajectories and the application of a diagnostic tool known as the “M” function. Hyperbolic trajectories (HTs), produced by the transverse intersections of stable and unstable invariant manifolds, may yield chaotic saddles in M. Previous studies associated HTs with “cat’s eyes” generated by planetary wave breaking at the critical levels. HTs, and hence RWB, are found both outside and inside the stratospheric polar vortex (SPV). Significant findings are as follows: (i) stationary forcing produces HTs only outside of the SPV and (ii) eastward-traveling wave forcing can produce HTs both outside and inside of the SPV. In either case, HTs appear at or near the critical latitudes. RWB was found to occur inside the SPV even when the forcing was located completely outside. In all cases, the westerly jet remained impermeable throughout the simulations. The results suggest that the HT inside the SPV observed by de la Cámara et al. during the southern spring 2005 was due to RWB of an eastward-traveling wave of wavenumber 1.

Current affiliation: Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.

Corresponding author address: Dr. Anirban Guha, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, SL 109, Kanpur 208016 UP, India. E-mail: anirbanguha.ubc@gmail.com
Save