• Barnes, E., , D. L. Hartmann, , D. M. W. Frierson, , and J. Kidston, 2010: Effect of latitude on the persistence of eddy-driven jet. Geophys. Res. Lett., 37, L11804, doi:10.1029/2010GL043199.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., , B. Hoskins, , and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and P. Zurita-Gotor, 2008: The tropospheric jet response to prescribed zonal forcing in an idealized atmospheric model. J. Atmos. Sci., 65, 22542271, doi:10.1175/2007JAS2589.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and R. A. Plumb, 2009: Quantifying the eddy feedback and the persistence of the zonal index in an idealized atmospheric model. J. Atmos. Sci., 66, 37073720, doi:10.1175/2009JAS3165.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and R. A. Plumb, 2014: Effective isentropic diffusivity of tropospheric transport. J. Atmos. Sci., 71, 34993520, doi:10.1175/JAS-D-13-0333.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , I. Held, , and W. Robinson, 2007: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 28992915, doi:10.1175/JAS3995.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , J. Lu, , and D. M. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, doi:10.1175/2008JCLI2306.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , J. Lu, , and L. Sun, 2013: Delineating the eddy–zonal flow interaction in the atmospheric circulation response to climate forcing: Uniform SST warming in an idealized aquaplanet model. J. Atmos. Sci., 70, 22142233, doi:10.1175/JAS-D-12-0248.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and et al. , 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , G. Magnusdottir, , R. Saravanan, , and A. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889, doi:10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, doi:10.1175/2010JPO4278.1.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., , R. Seager, , N. Naik, , M. Cane, , and M. Ting, 2010: The role of linear wave refraction in the transient eddy–mean flow response to tropical Pacific SST anomalies. Quart. J. Roy. Meteor. Soc., 136, 21322146, doi:10.1002/qj.688.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., , and P. Zuercher, 1998: Response of baroclinic life cycles to barotropic shear. J. Atmos. Sci., 55, 297313, doi:10.1175/1520-0469(1998)055<0297:ROBLCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., , and E. Shuckburgh, 2000: Effective diffusivity as a diagnostic of atmospheric transport: 2. Troposphere and lower stratosphere. J. Geophys. Res., 105, 22 79522 810, doi:10.1029/2000JD900092.

    • Search Google Scholar
    • Export Citation
  • Held, I., , and E. O’Brien, 1992: Quasigeostrophic turbulence in a three-layer model: Effects of vertical structure in the mean shear. J. Atmos. Sci., 49, 18611870, doi:10.1175/1520-0469(1992)049<1861:QTIATL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and P. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , and F.-F. Jin, 2009: Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys. Res. Lett., 36, L05709, doi:10.1029/2008GL036435.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , I. M. Held, , and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., , W. A. Robinson, , I. Blad, , N. M. J. Hall, , S. Peng, , and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, doi:10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., , and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, doi:10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, doi:10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , L. Sun, , Y. Wu, , and G. Chen, 2014: The role of subtropical irreversible PV mixing in the zonal mean circulation response to global warming–like thermal forcing. J. Climate, 27, 22972316, doi:10.1175/JCLI-D-13-00372.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , T. Sampe, , A. Goto, , W. Ohfuchi, , and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., , and S. Yamane, 2009: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin. J. Climate, 22, 880904, doi:10.1175/2008JCLI2297.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., , and S. Yamane, 2010: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part II: North Pacific basin. J. Climate, 23, 64456467, doi:10.1175/2010JCLI3017.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci., 53, 15241537, doi:10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., , and D. Zhu, 2010: Finite-amplitude wave activity and diffusive flux of potential vorticity in eddy–mean flow interaction. J. Atmos. Sci., 67, 27012716, doi:10.1175/2010JAS3432.1.

    • Search Google Scholar
    • Export Citation
  • Nie, Y., , Y. Zhang, , X.-Q. Yang, , and G. Chen, 2013: Baroclinic anomalies associated with the Southern Hemisphere annular mode: Roles of synoptic and low-frequency eddies. Geophys. Res. Lett., 40, 23612366, doi:10.1002/grl.50396.

    • Search Google Scholar
    • Export Citation
  • Nie, Y., , Y. Zhang, , G. Chen, , X.-Q. Yang, , and D. A. Burrows, 2014: Quantifying barotropic and baroclinic eddy feedbacks in the persistence of the Southern Annular Mode. Geophys. Res. Lett., 41, 86368644, doi:10.1002/2014GL062210.

    • Search Google Scholar
    • Export Citation
  • Ogawa, F., , H. Nakamura, , K. Nishii, , T. Miyasaka, , and A. Kuwano-Yoshida, 2012: Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophys. Res. Lett., 39, L05804, doi:10.1029/2011GL049922.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, R. L., 1987: Comparison of conventional and transformed Eulerian diagnostics in the troposphere. Quart. J. Roy. Meteor. Soc., 113, 237254, doi:10.1256/smsqj.47513.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., , F.-F. Jin, , J.-S. Kug, , J.-X. Zhao, , and J. Park, 2009: A kinematic mechanism for positive feedback between synoptic eddies and NAO. Geophys. Res. Lett., 36, L11709, doi:10.1029/2009GL037294.

    • Search Google Scholar
    • Export Citation
  • Ring, M., , and R. Plumb, 2007: Forced annular mode patterns in a simple atmospheric general circulation model. J. Atmos. Sci., 64, 36113626, doi:10.1175/JAS4031.1.

    • Search Google Scholar
    • Export Citation
  • Ring, M., , and R. Plumb, 2008: The response of a simplified GCM to axisymmetric forcings: Applicability of the fluctuation–dissipation theorem. J. Atmos. Sci., 65, 38803898, doi:10.1175/2008JAS2773.1.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2009: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J. Atmos. Sci., 66, 15691592, doi:10.1175/2008JAS2919.1.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272, doi:10.1175/2011JAS3641.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57, 415422, doi:10.1175/1520-0469(2000)057<0415:ABMFTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., , H. Nakamura, , A. Goto, , and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 17931814, doi:10.1175/2009JCLI3163.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , N. Harnik, , Y. Kushnir, , W. Robinson, , and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solomon, A. B., , and P. H. Stone, 2001: Equilibration in an eddy resolving model with simplified physics. J. Atmos. Sci., 58, 561574, doi:10.1175/1520-0469(2001)058<0561:EIAERM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solomon, A. L., , G. Chen, , and J. Lu, 2012: Finite-amplitude Lagrangian-mean wave activity diagnostics applied to the baroclinic eddy life cycle. J. Atmos. Sci., 69, 30133027, doi:10.1175/JAS-D-11-0294.1.

    • Search Google Scholar
    • Export Citation
  • Sun, L., , G. Chen, , and J. Lu, 2013: Sensitivities and mechanisms of the zonal mean atmospheric circulation response to tropical warming. J. Atmos. Sci., 70, 24872504, doi:10.1175/JAS-D-12-0298.1.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., , B. Hoskins, , and M. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, doi:10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-H., , and G. Magnusdottir, 2011: Tropospheric Rossby wave breaking and the SAM. J. Climate, 24, 21342146, doi:10.1175/2010JCLI4009.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , and D. L. Hartmann, 1993: Zonal flow vacillation and eddy forcing in a simple GCM of the atmosphere. J. Atmos. Sci., 50, 32443259, doi:10.1175/1520-0469(1993)050<3244:ZFVAEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , and P. Stone, 2011: Baroclinic adjustment in an atmosphere–ocean thermally coupled model: The role of the boundary layer processes. J. Atmos. Sci., 68, 27102730, doi:10.1175/JAS-D-11-078.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , P. Stone, , and A. Solomon, 2009: The role of boundary layer processes in limiting PV homogenization. J. Atmos. Sci., 66, 16121632, doi:10.1175/2008JAS2914.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , X.-Q. Yang, , Y. Nie, , and G. Chen, 2012: Annular mode–like variation in a multilayer quasigeostrophic model. J. Atmos. Sci., 69, 29402958, doi:10.1175/JAS-D-11-0214.1.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., , J. Blanco-Fuentes, , and E. P. Gerber, 2014: The impact of baroclinic eddy feedback on the persistence of jet variability in the two-layer model. J. Atmos. Sci., 71, 410429, doi:10.1175/JAS-D-13-0102.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 78 3
PDF Downloads 77 77 3

Delineating the Barotropic and Baroclinic Mechanisms in the Midlatitude Eddy-Driven Jet Response to Lower-Tropospheric Thermal Forcing

View More View Less
  • 1 Institute for Climate and Global Change Research, and Jiangsu Collaborative Innovation Center for Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing, China
  • | 2 Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
  • | 3 Institute for Climate and Global Change Research, and Jiangsu Collaborative Innovation Center for Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing, China
© Get Permissions
Restricted access

Abstract

Observations and climate models have shown that the midlatitude eddy-driven jet can exhibit an evident latitudinal shift in response to lower-tropospheric thermal forcing (e.g., the tropical SST warming during El Niño or extratropical SST anomalies associated with the atmosphere–ocean–sea ice coupling). In addition to the direct thermal wind response, the eddy feedbacks—including baroclinic mechanisms, such as lower-level baroclinic eddy generation, and barotropic mechanisms, such as upper-level wave propagation and breaking—can all contribute to the atmospheric circulation response to lower-level thermal forcing, but their individual roles have not been well explained. In this study, using a nonlinear β-plane multilevel quasigeostrophic channel model, the mechanisms through which the lower-level thermal forcing induces the jet shift are investigated. By diagnosing the finite-amplitude wave activity budget, the baroclinic and barotropic eddy feedbacks to the lower-level thermal forcing are delineated. Particularly, by examining the transient circulation response after thermal forcing is switched on, it is shown that the lower-level thermal forcing affects the eddy-driven jet rapidly by modifying the upper-level zonal thermal wind distribution and the associated meridional wave propagation and breaking. The anomalous baroclinic eddy generation, however, acts to enhance the latitudinal shift of the eddy-driven jet only in the later stage of transient response. Furthermore, the barotropic mechanism is explicated by overriding experiments in which the barotropic flow in the vorticity advection is prescribed. Unlike the conventional baroclinic view, the barotropic eddy feedback, particularly the irreversible PV mixing through barotropic vorticity advection and deformation, plays a major role in the atmospheric circulation response to the lower-level thermal forcing.

Denotes Open Access content.

Corresponding author address: Yang Zhang, School of Atmospheric Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China. E-mail: yangzh@alum.mit.edu

Abstract

Observations and climate models have shown that the midlatitude eddy-driven jet can exhibit an evident latitudinal shift in response to lower-tropospheric thermal forcing (e.g., the tropical SST warming during El Niño or extratropical SST anomalies associated with the atmosphere–ocean–sea ice coupling). In addition to the direct thermal wind response, the eddy feedbacks—including baroclinic mechanisms, such as lower-level baroclinic eddy generation, and barotropic mechanisms, such as upper-level wave propagation and breaking—can all contribute to the atmospheric circulation response to lower-level thermal forcing, but their individual roles have not been well explained. In this study, using a nonlinear β-plane multilevel quasigeostrophic channel model, the mechanisms through which the lower-level thermal forcing induces the jet shift are investigated. By diagnosing the finite-amplitude wave activity budget, the baroclinic and barotropic eddy feedbacks to the lower-level thermal forcing are delineated. Particularly, by examining the transient circulation response after thermal forcing is switched on, it is shown that the lower-level thermal forcing affects the eddy-driven jet rapidly by modifying the upper-level zonal thermal wind distribution and the associated meridional wave propagation and breaking. The anomalous baroclinic eddy generation, however, acts to enhance the latitudinal shift of the eddy-driven jet only in the later stage of transient response. Furthermore, the barotropic mechanism is explicated by overriding experiments in which the barotropic flow in the vorticity advection is prescribed. Unlike the conventional baroclinic view, the barotropic eddy feedback, particularly the irreversible PV mixing through barotropic vorticity advection and deformation, plays a major role in the atmospheric circulation response to the lower-level thermal forcing.

Denotes Open Access content.

Corresponding author address: Yang Zhang, School of Atmospheric Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China. E-mail: yangzh@alum.mit.edu
Save