• Adams, J., 1989: MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations. Appl. Math. Comput., 34, 113146, doi:10.1016/0096-3003(89)90010-6.

    • Search Google Scholar
    • Export Citation
  • Adlerman, E. J., 2003: Numerical simulations of cyclic storm behaviors: Mesocyclogenesis and tornadogenesis. Ph.D. dissertation, University of Oklahoma, 219 pp.

  • Beck, J., , and C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649669, doi:10.1175/MWR-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Beck, J., , J. L. Schroeder, , and J. M. Wurman, 2006: High-resolution dual-Doppler analyses of the 29 May 2001 Kress, Texas, cyclic supercell. Mon. Wea. Rev., 134, 31253148, doi:10.1175/MWR3246.1.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and et al. , 2005: The Shared Mobile Atmospheric Research and Teaching (SMART) radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274, doi:10.1175/BAMS-86-9-1263.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., , M. M. French, , I. PopStefanija, , R. T. Bluth, , and J. B. Knorr, 2010: A mobile, phased-array Doppler radar for the study of severe convective storms the MWR-05XP. Bull. Amer. Meteor. Soc., 91, 579600, doi:10.1175/2009BAMS2914.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., , M. D. Parker, , and L. Wicker, 2012: Uncertainties in trajectory calculations within near-surface mesocyclones of simulated supercells. Mon. Wea. Rev., 140, 29592966, doi:10.1175/MWR-D-12-00131.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2003: An expression for effective buoyancy in surroundings with horizontal density gradients. J. Atmos. Sci., 60, 29222925, doi:10.1175/1520-0469(2003)060<2922:AEFEBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., , and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132, 853863, doi:10.1175/1520-0493(2004)132<0853:IBARQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Finley, C. A., , and B. D. Lee, 2008: Mobile mesonet observations of an intense RFD and multiple RFD gust fronts in the May 23 Quinter, Kansas tornadic supercell during TWISTEX 2008. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., P3.18. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142133.htm.]

  • Finley, C. A., , B. D. Lee, , C. D. Karstens, , M. Grzych, , and T. M. Samaras, 2010: Mobile mesonet observations of the rear-flank downdraft evolution associated with a violent tornado near Bowdle, SD on 22 May 2010. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 8A.2. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_176132.htm.]

  • French, M. M., , D. W. Burgess, , E. R. Mansell, , and L. J. Wicker, 2015: Bulk hook echo raindrop sizes retrieved using mobile, polarimetric Doppler radar observations. J. Appl. Meteor. Climatol., 54, 423450, doi:10.1175/JAMC-D-14-0171.1.

    • Search Google Scholar
    • Export Citation
  • Grzych, M., , B. D. Lee, , and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from project ANSWERS. Mon. Wea. Rev., 135, 240246, doi:10.1175/MWR3288.1.

    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., , J. L. Schroeder, , and C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 23442363, doi:10.1175/2007MWR2285.1.

    • Search Google Scholar
    • Export Citation
  • Hu, M., , and M. Xue, 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135, 507525, doi:10.1175/MWR3313.1.

    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., , and D. M. Romps, 2015: Effective buoyancy, inertial pressure, and the mechanical generation of boundary layer mass flux by cold pools. J. Atmos. Sci., 72, 31993213, doi:10.1175/JAS-D-14-0349.1.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., , J. Wurman, , Y. Richardson, , P. Markowski, , P. Robinson, , and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, Tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, doi:10.1175/MWR-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2011: Precipitation properties of supercell hook echoes. Electron. J. Severe Storms Meteor., 6 (5). [Available online at http://ejssm.org/ojs/index.php/ejssm/article/viewArticle/93.]

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , Z. J. Lebo, , and H. C. Morrisson, 2015: On the mechanisms of rain formation in an idealized supercell storm. Mon. Wea. Rev., 143, 27542773, doi:10.1175/MWR-D-14-00402.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., , C. A. Finley, , and T. M. Samaras, 2011: Surface analysis near and within the Tipton, Kansas, tornado on 29 May 2008. Mon. Wea. Rev., 139, 370386, doi:10.1175/2010MWR3454.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., , C. A. Finley, , and C. D. Karstens, 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 34193441, doi:10.1175/MWR-D-11-00351.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , J. M. Straka, , and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, doi:10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , E. Rasmussen, , J. Straka, , R. Davies-Jones, , Y. Richardson, , and R. J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 35133535, doi:10.1175/2008MWR2315.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., , Y. Richardson, , J. Wurman, , and P. Markowski, 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 50175043, doi:10.1175/2008MWR2442.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., , Y. Richardson, , P. Markowski, , D. Dowell, , and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327, doi:10.1175/MWR-D-11-00025.1.

    • Search Google Scholar
    • Export Citation
  • Mashiko, W., , H. Niino, , and T. Kato, 2009: Numerical simulation of tornadogenesis in an outer-rainband minisupercell of Typhoon Shanshan on 17 September 2006. Mon. Wea. Rev., 137, 42384260, doi:10.1175/2009MWR2959.1.

    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., , J. B. Mead, , H. B. Bluestein, , J. C. Snyder, , and J. B. Houser, 2013: A mobile rapid-scanning X-band polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, doi:10.1175/JTECH-D-12-00166.1.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., , D. W. Burgess, , and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 28492870, doi:10.1175/2008MWR2330.1.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A., , M. Xue, , and M. Hu, 2014: Tornadogenesis within numerically simulated 8 May 2003 Oklahoma City tornadic supercell storm. J. Atmos. Sci., 71, 130154, doi:10.1175/JAS-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., , C. C. Weiss, , J. L. Schroeder, , L. J. Wicker, , and M. I. Biggerstaff, 2011: Observations of the surface boundary structure within the 23 May 2007 Perryton, Texas, supercell. Mon. Wea. Rev., 139, 37303749, doi:10.1175/MWR-D-10-05078.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., , C. C. Weiss, , M. M. French, , H. B. Bluestein, , P. M. Markowski, , and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 29352960, doi:10.1175/MWR-D-13-00240.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J., , E. Rasmussen, , R. Davies-Jones, , and P. Markowski, 2007: An observational and idealized numerical examination of low-level counter-rotating vortices toward the rear flank of supercells. Electron. J. Severe Storms Meteor., 2 (8). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewFile/32/33.]

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., , and J. Simpson, 1993: The Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 3572.

  • Wurman, J., , J. Straka, , E. Rasmussen, , M. Randall, , and A. Zahrai, 1997: Design and deployment from a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, doi:10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , Y. Richardson, , C. Alexander, , S. Weygandt, , and P. F. Zhang, 2007a: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, doi:10.1175/MWR3276.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , Y. Richardson, , C. Alexander, , S. Weygandt, , and P. F. Zhang, 2007b: Dual-Doppler analysis of winds and vorticity budget terms near a tornado. Mon. Wea. Rev., 135, 23922405, doi:10.1175/MWR3404.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , K. Kosiba, , P. Markowski, , Y. Richardson, , D. Dowell, , and P. Robinson, 2010: Finescale single- and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Mon. Wea. Rev., 138, 44394455, doi:10.1175/2010MWR3330.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., , M. Hu, , and A. Schenkman, 2014: Numerical prediction of 8 May 2003 Oklahoma City tornadic supercell and embedded tornado using ARPS with the assimilation of WSR-88D radar data. Wea. Forecasting, 29, 3962, doi:10.1175/WAF-D-13-00029.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 8
PDF Downloads 35 35 9

The Cause of Internal Outflow Surges in a High-Resolution Simulation of the 8 May 2003 Oklahoma City Tornadic Supercell

View More View Less
  • 1 Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • | 2 Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 3 Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma, and Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
© Get Permissions
Restricted access

Abstract

A high-resolution simulation of the 8 May 2003 Oklahoma tornadic supercell is analyzed to determine the origin of internal outflow surges within the low-level cold pool. The analyzed simulation has 50-m horizontal grid spacing and is quadruply nested within larger, lower-resolution domains that were initialized via three-dimensional variational data assimilation (3DVAR) of radar and other observations. The high-resolution simulation produces two tornadoes that track in close proximity to the observed tornado on 8 May 2003. The authors’ previous study determined that an internal outflow surge instigated tornadogenesis for the first tornado in this simulation but the cause of this internal outflow surge was unclear.

In this study, the vertical momentum equation is analyzed along backward trajectories that are initialized within the tornado-triggering internal outflow surge. The analysis reveals that the internal outflow surge is forced by the dynamic part of the vertical pressure gradient. Further examination reveals that the dynamic forcing is the result of a high pressure perturbation in an area of stagnating flow on the west and northwest sides of the low-level (below ~3 km AGL) mesocyclone. This region of high perturbation pressure is unsteady and forces several other warm internal outflow surges on the west side of the tornado. Cold internal outflow surges also occur later in the simulation and are shown to be buoyantly forced by evaporation and water loading in heavy precipitation.

Corresponding author address: Alexander D. Schenkman, Center for Analysis and Prediction of Storms, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: alex3238@ou.edu

Abstract

A high-resolution simulation of the 8 May 2003 Oklahoma tornadic supercell is analyzed to determine the origin of internal outflow surges within the low-level cold pool. The analyzed simulation has 50-m horizontal grid spacing and is quadruply nested within larger, lower-resolution domains that were initialized via three-dimensional variational data assimilation (3DVAR) of radar and other observations. The high-resolution simulation produces two tornadoes that track in close proximity to the observed tornado on 8 May 2003. The authors’ previous study determined that an internal outflow surge instigated tornadogenesis for the first tornado in this simulation but the cause of this internal outflow surge was unclear.

In this study, the vertical momentum equation is analyzed along backward trajectories that are initialized within the tornado-triggering internal outflow surge. The analysis reveals that the internal outflow surge is forced by the dynamic part of the vertical pressure gradient. Further examination reveals that the dynamic forcing is the result of a high pressure perturbation in an area of stagnating flow on the west and northwest sides of the low-level (below ~3 km AGL) mesocyclone. This region of high perturbation pressure is unsteady and forces several other warm internal outflow surges on the west side of the tornado. Cold internal outflow surges also occur later in the simulation and are shown to be buoyantly forced by evaporation and water loading in heavy precipitation.

Corresponding author address: Alexander D. Schenkman, Center for Analysis and Prediction of Storms, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: alex3238@ou.edu
Save