Convectively Coupled Kelvin Waves: From Linear Theory to Global Models

Michael J. Herman New Mexico Institute of Mining and Technology, Socorro, New Mexico

Search for other papers by Michael J. Herman in
Current site
Google Scholar
PubMed
Close
,
Zeljka Fuchs University of Split, Split, Croatia

Search for other papers by Zeljka Fuchs in
Current site
Google Scholar
PubMed
Close
,
David J. Raymond New Mexico Institute of Mining and Technology, Socorro, New Mexico

Search for other papers by David J. Raymond in
Current site
Google Scholar
PubMed
Close
, and
Peter Bechtold European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Peter Bechtold in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors analyze composite structures of tropical convectively coupled Kelvin waves (CCKWs) in terms of the theory of Raymond and Fuchs using radiosonde data, 3D analysis and reanalysis model output, and annual integrations with the ECMWF model on the full planet and on an aquaplanet. Precipitation anomalies are estimated using the NOAA interpolated OLR and TRMM 3B42 datasets, as well as using model OLR and rainfall diagnostics. Derived variables from these datasets are used to examine assumptions of the theory. Large-scale characteristics of wave phenomena are robust in all datasets and models where Kelvin wave variance is large. Indices from the theory representing column moisture and convective inhibition are also robust. The results suggest that the CCKW is highly dependent on convective inhibition, while column moisture does not play an important role.

Corresponding author address: Michael J. Herman, Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801. E-mail: mherman@nmt.edu

Abstract

The authors analyze composite structures of tropical convectively coupled Kelvin waves (CCKWs) in terms of the theory of Raymond and Fuchs using radiosonde data, 3D analysis and reanalysis model output, and annual integrations with the ECMWF model on the full planet and on an aquaplanet. Precipitation anomalies are estimated using the NOAA interpolated OLR and TRMM 3B42 datasets, as well as using model OLR and rainfall diagnostics. Derived variables from these datasets are used to examine assumptions of the theory. Large-scale characteristics of wave phenomena are robust in all datasets and models where Kelvin wave variance is large. Indices from the theory representing column moisture and convective inhibition are also robust. The results suggest that the CCKW is highly dependent on convective inhibition, while column moisture does not play an important role.

Corresponding author address: Michael J. Herman, Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801. E-mail: mherman@nmt.edu
Save
  • Andersen, J. A., and Z. Kuang, 2008: A toy model of the instability in the equatorially trapped convectively coupled waves on the equatorial beta plane. J. Atmos. Sci., 65, 3736–3757, doi:10.1175/2008JAS2776.1.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2005: The relationship between wind speed and precipitation in the Pacific ITCZ. J. Climate, 18, 4317–4328, doi:10.1175/JCLI3519.1.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 1337–1351, doi:10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967–977, doi:10.1175/BAMS-85-7-967.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA–Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsberger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 3055–3079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • European Centre for Medium-Range Weather Forecasts, 2012: ERA-Interim project, single parameter 6-hourly surface analysis and surface forecast time series. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 14 June 2014, doi:10.5065/D64747WN.

  • Firestone, J. K., and B. A. Albrecht, 1986: The structure of the atmospheric boundary layer in the central equatorial Pacific during FGGE. Mon. Wea. Rev., 114, 2219–2231, doi:10.1175/1520-0493(1986)114<2219:TSOTAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2007: A simple, vertically resolved model of tropical disturbances with a humidity closure. Tellus, 59A, 344–354, doi:10.1111/j.1600-0870.2007.00230.x.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., S. Gjorgjievska, and D. J. Raymond, 2012: Effects of varying the shape of the convective heating profile on convectively coupled gravity waves and moisture modes. J. Atmos. Sci., 69, 2505–2519, doi:10.1175/JAS-D-11-0308.1.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., S. L. Sessions, and D. J. Raymond, 2014: Mechanisms controlling the onset of simulated convectively coupled Kelvin waves. Tellus, 66A, 22107, doi:10.3402/tellusa.v66.22107.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127, 445–468, doi:10.1002/qj.49712757211.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61, 2707–2721, doi:10.1175/JAS3352.1.

    • Search Google Scholar
    • Export Citation
  • Hirons, L., P. Inness, F. Vitart, and P. Bechtold, 2013: Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process-based diagnostics. Quart. J. Roy. Meteor. Soc., 139, 1427–1444, doi:10.1002/qj.2059.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006a: Multicloud convective parametrizations with crude vertical structure. Theor. Comput. Fluid Dyn., 20, 351–375, doi:10.1007/s00162-006-0013-2.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2006b: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63, 1308–1323, doi:10.1175/JAS3677.1.

    • Search Google Scholar
    • Export Citation
  • Khouider, B., and A. J. Majda, 2008: Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65, 3376–3397, doi:10.1175/2008JAS2752.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008a: Modeling the interaction between cumulus convection and linear gravity waves using a limited-domain cloud system–resolving model. J. Atmos. Sci., 65, 576–591, doi:10.1175/2007JAS2399.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008b: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834–854, doi:10.1175/2007JAS2444.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., P. N. Blossey, and C. S. Bretherton, 2005: A new approach for 3D cloud-resolving simulations of large-scale atmospheric circulation. Geophys. Res. Lett., 32, L02809, doi:10.1029/2004GL021024.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., E. J. Zipser, and B. S. Ferrier, 2000: Sensitivity of tropical west Pacific oceanic squall lines to tropospheric wind and moisture profiles. J. Atmos. Sci., 57, 2351–2373, doi:10.1175/1520-0469(2000)057<2351:SOTWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and M. G. Shefter, 2001a: Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58, 1567–1584, doi:10.1175/1520-0469(2001)058<1567:MFSIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and M. G. Shefter, 2001b: Waves and instabilities for model tropical convective parameterizations. J. Atmos. Sci., 58, 896–914, doi:10.1175/1520-0469(2001)058<0896:WAIFMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., B. Khouider, G. N. Kiladis, K. H. Straub, and M. G. Shefter, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61, 2188–2205, doi:10.1175/1520-0469(2004)061<2188:AMFCCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S. K. Esbensen, 2005: A modeling study of summertime east Pacific wind-induced ocean–atmosphere exchange in the intraseasonal oscillation. J. Climate, 18, 568–584, doi:10.1175/JCLI-3280.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 1515–1535, doi:10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–42.

  • National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2000: NCEP FNL operational model global tropospheric analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 3 July 2014, doi:10.5065/D6M043C6.

  • Peters, M. E., and C. S. Bretherton, 2006: Structure of tropical variability from a vertical mode perspective. Theor. Comput. Fluid Dyn., 20, 501–524, doi:10.1007/s00162-006-0034-x.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1995: Regulation of moist convection over the west Pacific warm pool. J. Atmos. Sci., 52, 3945–3959, doi:10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and X. Zeng, 2005: Modeling tropical atmospheric convection in the context of the weak temperature gradient approximation. Quart. J. Roy. Meteor. Soc., 131, 1301–1320, doi:10.1256/qj.03.97.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2007: Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus, 59A, 627–640, doi:10.1111/j.1600-0870.2007.00268.x.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., G. B. Raga, C. S. Bretherton, J. Molinari, C. López Carillo, and Ž. Fuchs, 2003: Convective forcing in the intertropical convergence zone of the eastern Pacific. J. Atmos. Sci., 60, 2064–2082, doi:10.1175/1520-0469(2003)060<2064:CFITIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., Ž. Fuchs, S. Gjorgjievska, and S. L. Sessions, 2015: Balanced dynamics and thermodynamic constraints in the tropical troposphere. J. Adv. Model. Earth Syst., 7, 1093–1116, doi:10.1002/2015MS000467.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T., P. Kucera, M. Gentry, L. Carey, A. Lare, R.-F. Lin, B. Demoz, and D. Starr, 2008: The relationship between anvil clouds and convective cells: A case study in south Florida during CRYSTAL-FACE. Mon. Wea. Rev., 136, 3917–3932, doi:10.1175/2008MWR2441.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. D., 2008: Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 1342–1359, doi:10.1175/2007JAS2345.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. D., 2012a: Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 69, 2097–2106, doi:10.1175/JAS-D-12-03.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. D., 2012b: The spectrum of convectively coupled Kelvin waves and the Madden–Julian oscillation in regions of low-level easterly and westerly background flow. J. Atmos. Sci., 69, 2107–2111, doi:10.1175/JAS-D-12-060.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. D., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61, 2105–2132, doi:10.1175/1520-0469(2004)061<2105:ACOWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132, 422–444, doi:10.1175/1520-0493(2004)132<0422:LMADCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 30–53, doi:10.1175/1520-0469(2002)059<0030:OOACCK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., P. T. Haertel, and G. N. Kiladis, 2010: An analysis of convectively coupled Kelvin waves in 20 WCRP CMIP3 global coupled climate models. J. Climate, 23, 3031–3056, doi:10.1175/2009JCLI3422.1.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and B. E. Mapes, 2008: Multiscale convective wave disturbances in the tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65, 140–155, doi:10.1175/2007JAS2353.1.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., D. A. Randall, and B. E. Mapes, 2007: Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64, 1210–1229, doi:10.1175/JAS3884.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374–399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613–640, doi:10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. E. Mapes, 2012a: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part I: Space–time spectral analyses. J. Atmos. Sci., 69, 3–16, doi:10.1175/JAS-D-11-033.1.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., and B. E. Mapes, 2012b: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part II: Composite analysis based on space–time filtering. J. Atmos. Sci., 69, 17–34, doi:10.1175/JAS-D-11-034.1.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 2000: The 1997 Pan American Climate Studies Tropical Eastern Pacific Process Study. Part I: ITCZ region. Bull. Amer. Meteor. Soc., 81, 451–481, doi:10.1175/1520-0477(2000)081<0451:TPACST>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 522 148 11
PDF Downloads 249 85 6