• Allen, D. R., , and N. Nakamura, 2003: Tracer equivalent latitude: A diagnostic tool for isentropic transport studies. J. Atmos. Sci., 60, 287304, doi:10.1175/1520-0469(2003)060<0287:TELADT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrews, D., , and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., , J. Slingo, , and T. Woollings, 2012: A methodology for the comparison of blocking climatologies across indices, models and climate scenarios. Climate Dyn., 38, 24672481, doi:10.1007/s00382-011-1243-6.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., , T. B. Kimberlain, , R. J. Berg, , J. Cangialosi, , and J. L. Beven II, 2013: Tropical cyclone report: Hurricane Sandy. National Hurricane Center Tropical Cyclone Rep. AL182012, 157 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2014: Waves and Mean Flows. Cambridge University Press, 374 pp.

  • Butchart, N., , and E. Remsberg, 1986: The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J. Atmos. Sci., 43, 13191339, doi:10.1175/1520-0469(1986)043<1319:TAOTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and P. G. Drazin, 1961: On the transfer of energy in stationary mountain waves. J. Geophys. Res., 66, 83110, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 1988: The repeated filamentation of two-dimensional vorticity interfaces. J. Fluid Mech., 194, 511547, doi:10.1017/S0022112088003088.

    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., , and S.-W. Son, 2013: Northern Hemisphere blocking frequency and duration in the CMIP5 models. J. Geophys. Res. Atmos., 118, 11791188, doi:10.1002/jgrd.50143.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2013: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer Science & Business Media, 516 pp.

  • Haynes, P. H., 1988: Forced, dissipative generalizations of finite-amplitude wave-activity conservation relations for zonal and nonzonal basic flows. J. Atmos. Sci., 45, 23522362, doi:10.1175/1520-0469(1988)045<2352:FDGOFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and P. J. Phillipps, 1987: Linear and nonlinear barotropic decay on the sphere. J. Atmos. Sci., 44, 200207, doi:10.1175/1520-0469(1987)044<0200:LANBDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Hovmöller, E., 1949: The trough-and-ridge diagram. Tellus, 1A, 6266, doi:10.1111/j.2153-3490.1949.tb01260.x.

  • Killworth, P. D., , and M. E. McIntyre, 1985: Do Rossby-wave critical layers absorb, reflect, or over-reflect? J. Fluid Mech., 161, 449492, doi:10.1017/S0022112085003019.

    • Search Google Scholar
    • Export Citation
  • Lejenäs, H., , and H. Økland, 1983: Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data. Tellus, 35A, 350362, doi:10.1111/j.1600-0870.1983.tb00210.x.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., , and P. H. Haynes, 1996: Wave activity diagnostics applied to baroclinic wave life cycles. J. Atmos. Sci., 53, 2317–2353, doi:10.1175/1520-0469(1996)053<2317:WADATB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M., , and T. Shepherd, 1987: An exact local conservation theorem for finite-amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on Arnold’s stability theorems. J. Fluid Mech., 181, 527565, doi:10.1017/S0022112087002209.

    • Search Google Scholar
    • Export Citation
  • Methven, J., , and P. Berrisford, 2015: The slowly evolving background state of the atmosphere. Quart. J. Roy. Meteor. Soc., 141, 2237–2258, doi:10.1002/qj.2518.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., , and A. Solomon, 2010: Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part I: Quasigeostrophic theory and analysis. J. Atmos. Sci., 67, 39673983, doi:10.1175/2010JAS3503.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., , and D. Zhu, 2010: Finite-amplitude wave activity and diffusive flux of potential vorticity in eddy–mean flow interaction. J. Atmos. Sci., 67, 27012716, doi:10.1175/2010JAS3432.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., , and A. Solomon, 2011: Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part II: Analysis in the isentropic coordinate. J. Atmos. Sci., 68, 27832799, doi:10.1175/2011JAS3685.1.

    • Search Google Scholar
    • Export Citation
  • Pelly, J. L., , and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743755, doi:10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, doi:10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and R. A. Plumb, 1992: Rossby wave breaking, microbreaking, filamentation, and secondary vortex formation: The dynamics of a perturbed vortex. J. Atmos. Sci., 49, 462476, doi:10.1175/1520-0469(1992)049<0462:RWBMFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., 2014: Wave activity events and the variability of the stratospheric polar vortex. J. Climate, 27, 77967806, doi:10.1175/JCLI-D-13-00756.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., , and N. Nakamura, 2012: An exact Lagrangian-mean wave activity for finite-amplitude disturbances to barotropic flow on a sphere. J. Fluid Mech., 693, 6992, doi:10.1017/jfm.2011.460.

    • Search Google Scholar
    • Export Citation
  • Swanson, K., 2000: Stationary wave accumulation and the generation of low-frequency variability on zonally varying flows. J. Atmos. Sci., 57, 22622280, doi:10.1175/1520-0469(2000)057<2262:SWAATG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., , and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., , and V. Lagneau, 1999: Eulerian mean, contour integral, and finite-amplitude wave activity diagnostics applied to a single-layer model of the winter stratosphere. J. Atmos. Sci., 56, 689710, doi:10.1175/1520-0469(1999)056<0689:EMCIAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., , and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, doi:10.1034/j.1600-0870.1990.t01-2-00003.x.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , and N. Nakamura, 2015: Covariation of finite-amplitude wave activity and the zonal mean flow in the midlatitude troposphere: 1. Theory and application to the Southern Hemisphere summer. Geophys. Res. Lett., 42, 81928200, doi:10.1002/2015GL065830.

    • Search Google Scholar
    • Export Citation
  • Williams, I. N., , and S. J. Colucci, 2010: Characteristics of baroclinic wave packets during strong and weak stratospheric polar vortex events. J. Atmos. Sci., 67, 31903207, doi:10.1175/2010JAS3279.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 219 219 58
PDF Downloads 198 198 60

Local Finite-Amplitude Wave Activity as a Diagnostic of Anomalous Weather Events

View More View Less
  • 1 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois
© Get Permissions
Restricted access

Abstract

Finite-amplitude Rossby wave activity (FAWA) proposed by Nakamura and Zhu measures the waviness of quasigeostrophic potential vorticity (PV) contours and the associated modification of the zonal-mean zonal circulation, but it does not distinguish longitudinally localized weather anomalies, such as atmospheric blocking. In this article, FAWA is generalized to local wave activity (LWA) to diagnose eddy–mean flow interaction on the regional scale. LWA quantifies longitude-by-longitude contributions to FAWA following the meridional displacement of PV from the circle of equivalent latitude. The zonal average of LWA recovers FAWA. The budget of LWA is governed by the zonal advection of LWA and the radiation stress of Rossby waves. The utility of the diagnostic is tested with a barotropic vorticity equation on a sphere and meteorological reanalysis data. Compared with the previously derived Eulerian impulse-Casimir wave activity, LWA tends to be less filamentary and emphasizes large isolated vortices involving reversals of meridional gradient of potential vorticity. A pronounced Northern Hemisphere blocking episode in late October 2012 is well captured by a high-amplitude, near-stationary LWA. These analyses reveal that the nonacceleration relation holds approximately over regional scales: the growth of phase-averaged LWA and the deceleration of local zonal wind are highly correlated. However, marked departure from the exact nonacceleration relation is also observed during the analyzed blocking event, suggesting that the contributions from nonadiabatic processes to the blocking development are significant.

Corresponding author address: Noboru Nakamura, Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Ave., Chicago, IL 60637. E-mail: nnn@uchicago.edu

Abstract

Finite-amplitude Rossby wave activity (FAWA) proposed by Nakamura and Zhu measures the waviness of quasigeostrophic potential vorticity (PV) contours and the associated modification of the zonal-mean zonal circulation, but it does not distinguish longitudinally localized weather anomalies, such as atmospheric blocking. In this article, FAWA is generalized to local wave activity (LWA) to diagnose eddy–mean flow interaction on the regional scale. LWA quantifies longitude-by-longitude contributions to FAWA following the meridional displacement of PV from the circle of equivalent latitude. The zonal average of LWA recovers FAWA. The budget of LWA is governed by the zonal advection of LWA and the radiation stress of Rossby waves. The utility of the diagnostic is tested with a barotropic vorticity equation on a sphere and meteorological reanalysis data. Compared with the previously derived Eulerian impulse-Casimir wave activity, LWA tends to be less filamentary and emphasizes large isolated vortices involving reversals of meridional gradient of potential vorticity. A pronounced Northern Hemisphere blocking episode in late October 2012 is well captured by a high-amplitude, near-stationary LWA. These analyses reveal that the nonacceleration relation holds approximately over regional scales: the growth of phase-averaged LWA and the deceleration of local zonal wind are highly correlated. However, marked departure from the exact nonacceleration relation is also observed during the analyzed blocking event, suggesting that the contributions from nonadiabatic processes to the blocking development are significant.

Corresponding author address: Noboru Nakamura, Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Ave., Chicago, IL 60637. E-mail: nnn@uchicago.edu
Save