A New Method for Fast Computation of Three-Dimensional Atmospheric Infrared Radiative Transfer in a Nonscattering Medium, with an Application to Dynamical Simulation of Radiation Fog in a Built Environment

Laurent Makké CEREA, Marne la Vallée, France

Search for other papers by Laurent Makké in
Current site
Google Scholar
PubMed
Close
,
Luc Musson-Genon CEREA, Marne la Vallée, and EDF Research and Development, Chatou, France

Search for other papers by Luc Musson-Genon in
Current site
Google Scholar
PubMed
Close
,
Bertrand Carissimo CEREA, Marne la Vallée, and EDF Research and Development, Chatou, France

Search for other papers by Bertrand Carissimo in
Current site
Google Scholar
PubMed
Close
,
Pierre Plion EDF Research and Development, Chatou, France

Search for other papers by Pierre Plion in
Current site
Google Scholar
PubMed
Close
,
Maya Milliez EDF Research and Development, Chatou, France

Search for other papers by Maya Milliez in
Current site
Google Scholar
PubMed
Close
, and
Alexandre Douce EDF Research and Development, Chatou, France

Search for other papers by Alexandre Douce in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The atmospheric radiation field has seen the development of more accurate and faster methods to take into account absorption. Modeling fog formation, where infrared radiation is involved, requires accurate methods to compute cooling rates. Radiative fog appears under clear-sky conditions owing to a significant cooling during the night where absorption and emission are the dominant processes. Thanks to high-performance computing, high-resolution multispectral approaches to solving the radiative transfer equation are often used. Nevertheless, the coupling of three-dimensional radiative transfer with fluid dynamics is very computationally expensive. Radiation increases the computation time by around 50% over the pure computational fluid dynamics simulation. To reduce the time spent in radiation calculations, a new method using analytical absorption functions fitted by Sasamori on Yamamoto’s radiation chart has been developed to compute an equivalent absorption coefficient (spectrally integrated). Only one solution of the radiative transfer equation is needed against Nband × Ngauss for an Nband model with Ngauss quadrature points on each band. A comparison with simulation data has been done and the new parameterization of radiative properties proposed in this article shows the ability to handle variations of gas concentrations and liquid water.

Denotes Open Access content.

Current affiliation: ARIA Technologies, Boulougne-Billancourt, France.

Corresponding author address: Laurent Makké, ARIA Technologies, 8 rue de la ferme, Boulougne-Billancourt 92100, France. E-mail: lmakke@aria.fr

Abstract

The atmospheric radiation field has seen the development of more accurate and faster methods to take into account absorption. Modeling fog formation, where infrared radiation is involved, requires accurate methods to compute cooling rates. Radiative fog appears under clear-sky conditions owing to a significant cooling during the night where absorption and emission are the dominant processes. Thanks to high-performance computing, high-resolution multispectral approaches to solving the radiative transfer equation are often used. Nevertheless, the coupling of three-dimensional radiative transfer with fluid dynamics is very computationally expensive. Radiation increases the computation time by around 50% over the pure computational fluid dynamics simulation. To reduce the time spent in radiation calculations, a new method using analytical absorption functions fitted by Sasamori on Yamamoto’s radiation chart has been developed to compute an equivalent absorption coefficient (spectrally integrated). Only one solution of the radiative transfer equation is needed against Nband × Ngauss for an Nband model with Ngauss quadrature points on each band. A comparison with simulation data has been done and the new parameterization of radiative properties proposed in this article shows the ability to handle variations of gas concentrations and liquid water.

Denotes Open Access content.

Current affiliation: ARIA Technologies, Boulougne-Billancourt, France.

Corresponding author address: Laurent Makké, ARIA Technologies, 8 rue de la ferme, Boulougne-Billancourt 92100, France. E-mail: lmakke@aria.fr
Save
  • Archambeau, F., N. Méchitoua, and M. Sakiz, 2004: Code_Saturne: A finite volume code for the computation of turbulent incompressible flows—Industrial applications. Int. J. Finite Vol., 1, 162.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, and S. Gollmer, 1994: Independent pixel and Monte Carlo estimates of stratocumulus albedo. J. Atmos. Sci., 51, 37763790, doi:10.1175/1520-0469(1994)051<3776:IPAMCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, B. G., and K. D. Lathrop, 1965: Transport theory: The method of discrete ordinates. Los Alamos Scientific Laboratory of the University of California, 92 pp.

  • Chandrasekhar, S., 1950: Radiative Transfer. Oxford University Press, 393 pp.

  • Chou, M.-D., and A. Arking, 1980: Computation of infrared cooling rates in the water vapor bands. J. Atmos. Sci., 37, 855867, doi:10.1175/1520-0469(1980)037<0855:COICRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., K.-T. Lee, S.-C. Tsay, and Q. Fu, 1999: Parameterization for cloud longwave scattering for use in atmospheric models. J. Climate, 12, 159169, doi:10.1175/1520-0442-12.1.159.

    • Search Google Scholar
    • Export Citation
  • Davis, A. B., and Y. Knyazikhin, 2004: A primer in 3D radiative transfer. 3D Radiative Transfer in Cloudy Atmospheres, A. Marshak and A. Davis, Eds., Springer, 153–242.

  • Davis, J. M., 1994: Methods of modeling radiant energy exchange in radiation fog and clouds. Army Research Laboratory Tech. Rep. ARL-CR-103, 97 pp.

  • Dubuisson, P., V. Giraud, O. Chomette, H. Chepfer, and J. Pelon, 2005: Fast radiative transfer modeling for infrared imaging radiometry. J. Quant. Spectrosc. Radiat. Transfer, 95, 201220, doi:10.1016/j.jqsrt.2004.09.034.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., 1996: Efficient calculations of infrared fluxes and cooling rates using the two-stream equations. J. Atmos. Sci., 53, 19211932, doi:10.1175/1520-0469(1996)053<1921:ECOIFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., 2009: Radiative processes in the stable boundary layer: Part I. Radiative aspects. Bound.-Layer Meteor., 131, 105126, doi:10.1007/s10546-009-9364-8.

    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., and Y. Fouquart, 1991: The intercomparison of radiation codes in climate models: An overview. J. Geophys. Res., 96, 89258927, doi:10.1029/90JD01618.

    • Search Google Scholar
    • Export Citation
  • Elsasser, W. M., 1942: Heat transfer by infrared radiation in the atmosphere. Harvard Meteorological Studies 6, 107 pp.

  • Evans, K. F., 1998: The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci., 55, 429446, doi:10.1175/1520-0469(1998)055<0429:TSHDOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferziger, J. H., and M. Perić, 2002: Computational Methods for Fluid Dynamics. 3rd ed. Springer-Verlag, 426 pp.

  • Fleck, J. A., 1961: The calculation of nonlinear radiation transport by a Monte Carlo method. University of California Lawrence Radiation Laboratory Tech. Rep., 43 pp.

  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., and R. A. Brost, 1981: Radiative cooling effects within and above the nocturnal boundary layer. J. Atmos. Sci., 38, 27302746, doi:10.1175/1520-0469(1981)038<2730:RCEWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goody, R. M., 1952: A statistical band model for water vapor. Quart. J. Roy. Meteor. Soc., 78, 165169, doi:10.1002/qj.49707833604.

  • Green, A. E. S., 1964: Attenuation by ozone and the earth’s albedo in the middle ultraviolet. Appl. Opt., 3, 203208, doi:10.1364/AO.3.000203.

    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., and Coauthors, 2010: PARISFOG: Shedding new light on fog physical processes. Bull. Amer. Meteor. Soc., 91, 767783, doi:10.1175/2009BAMS2671.1.

    • Search Google Scholar
    • Export Citation
  • Hoch, S. W., C. D. Whiteman, and B. Mayer, 2011: A systematic study of longwave radiative heating and cooling within valleys and basins using a three-dimensional radiative transfer model. J. Appl. Meteor. Climatol., 50, 24732489, doi:10.1175/JAMC-D-11-083.1.

    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., and V. Oinas, 1991: A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 90279063, doi:10.1029/90JD01945.

    • Search Google Scholar
    • Export Citation
  • Lenoble, J., 1993: Atmospheric Radiative Transfer. Hampton Series, A. Deepak Publishing, 532 pp.

  • Liou, K.-N., 2002: An Introduction to Atmospheric Radiation. International Geophysics Series, Vol. 84, Academic Press, 583 pp.

  • Malkmus, W., 1967: Random Lorentz band model with exponential-tailed line-intensity distribution function. J. Opt. Soc. Amer., 57, 323329, doi:10.1364/JOSA.57.000323.

    • Search Google Scholar
    • Export Citation
  • Modest, M. F., 2003: Radiative Heat Transfer. Academic Press, 822 pp.

  • Musson-Genon, L., 1987: Numerical simulations of a fog event with a one-dimensional boundary layer model. Mon. Wea. Rev., 115, 592607, doi:10.1175/1520-0493(1987)115<0592:NSOAFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ponnulakshmi, V. K., V. Mukund, K. R. Sreenivas, and G. Subramanian, 2009: The ramdas layer remains a micro-meteorological problem. Jawaharlal Nehru Centre for Advanced Scientific Research Tech. Rep. JNCASR/EMU/2009-1, 41 pp.

  • Ponnulakshmi, V. K., V. Mukund, D. K. Singh, K. R. Sreenivas, and G. Subramanian, 2012: Hypercooling in the nocturnal boundary layer: Broadband emissivity schemes. J. Atmos. Sci., 69, 28922905, doi:10.1175/JAS-D-11-0269.1.

    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 1992: The HITRAN molecular database: Editions of 1991 and 1992. J. Quant. Spectrosc. Radiat. Transfer, 48, 469507, doi:10.1016/0022-4073(92)90115-K.

    • Search Google Scholar
    • Export Citation
  • Sasamori, T., 1968: The radiative cooling calculation for application to general circulation experiments. J. Appl. Meteor., 7, 721729, doi:10.1175/1520-0450(1968)007<0721:TRCCFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Savijärvi, H., 2006: Radiative and turbulent heating rates in the clear-air boundary layer. Quart. J. Roy. Meteor. Soc., 132, 147161, doi:10.1256/qj.05.61.

    • Search Google Scholar
    • Export Citation
  • Shaffer, W. A., and P. E. Long Jr., 1975: A predictive boundary layer model. NOAA Tech. Memo. TDL-57, 44 pp.

  • Siqueira, M. B., and G. G. Katul, 2010: A sensitivity analysis of the nocturnal boundary-layer properties to atmospheric emissivity formulations. Bound.-Layer Meteor., 134, 223242, doi:10.1007/s10546-009-9440-0.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1984: The parametrization of radiation for numerical weather prediction and climate models. Mon. Wea. Rev., 112, 826866, doi:10.1175/1520-0493(1984)112<0826:TPORFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Varghese, S., A. S. Vasudevamurthy, and R. Narasimha, 2003: A fast, accurate method of computing near-surface longwave fluxes and cooling rates in the atmosphere. J. Atmos. Sci., 60, 28692886, doi:10.1175/1520-0469(2003)060<2869:AFAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Veyre, P., G. Sommeria, and Y. Fouquart, 1980: Modélisation de l’effet des hétérogénéités du champ radiatif infra-rouge sur la dynamique des nuages. J. Rech. Atmos., 14, 89108.

    • Search Google Scholar
    • Export Citation
  • Viskanta, R., R. W. Bergstrom, and R. O. Johnson, 1977: Radiative transfer in a polluted urban planetary boundary layer. J. Atmos. Sci., 34, 10911103, doi:10.1175/1520-0469(1977)034<1091:RTIAPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, G., 1952: On the radiation chart. Sci. Rep. Tohoku Univ. Ser. 5, 4, 923.

  • Zdunkowski, W. G., and F. G. Johnson, 1965: Infrared flux divergence calculations with newly constructed radiation tables. J. Appl. Meteor., 4, 371377, doi:10.1175/1520-0450(1965)004<0371:IFDCWN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Musson-Genon, B. Carissimo, M. Milliez, and E. Dupont, 2014: On the influence of a simple microphysics parametrization on radiation fog modelling: A case study during ParisFog. Bound.-Layer Meteor., 151, 293315, doi:10.1007/s10546-013-9894-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 244 115 8
PDF Downloads 125 34 5