A Numerical Study of Convection in a Condensing CO2 Atmosphere under Early Mars-Like Conditions

Tatsuya Yamashita Geodetic Department, Geospatial Information Authority of Japan, Tsukuba, Japan

Search for other papers by Tatsuya Yamashita in
Current site
Google Scholar
PubMed
Close
,
Masatsugu Odaka Department of Cosmosciences, Hokkaido University, Sapporo, Japan

Search for other papers by Masatsugu Odaka in
Current site
Google Scholar
PubMed
Close
,
Ko-ichiro Sugiyama Institute of Space and Astronautical Science, Sagamihara, Japan

Search for other papers by Ko-ichiro Sugiyama in
Current site
Google Scholar
PubMed
Close
,
Kensuke Nakajima Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan

Search for other papers by Kensuke Nakajima in
Current site
Google Scholar
PubMed
Close
,
Masaki Ishiwatari Department of Cosmosciences, Hokkaido University, Sapporo, Japan

Search for other papers by Masaki Ishiwatari in
Current site
Google Scholar
PubMed
Close
,
Seiya Nishizawa RIKEN Advanced Institute for Computational Science, Kobe, Japan

Search for other papers by Seiya Nishizawa in
Current site
Google Scholar
PubMed
Close
,
Yoshiyuki O. Takahashi Department of Planetology, and Center for Planetary Science, Kobe University, Kobe, Japan

Search for other papers by Yoshiyuki O. Takahashi in
Current site
Google Scholar
PubMed
Close
, and
Yoshi-Yuki Hayashi Department of Planetology, and Center for Planetary Science, Kobe University, Kobe, Japan

Search for other papers by Yoshi-Yuki Hayashi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud convection of a CO2 atmosphere where the major constituent condenses is numerically investigated under a setup idealizing a possible warm atmosphere of early Mars, utilizing a two-dimensional cloud-resolving model forced by a fixed cooling profile as a substitute for a radiative process. The authors compare two cases with different critical saturation ratios as condensation criteria and also examine sensitivity to number mixing ratio of condensed particles given externally.

When supersaturation is not necessary for condensation, the entire horizontal domain above the condensation level is continuously covered by clouds irrespective of number mixing ratio of condensed particles. Horizontal-mean cloud mass density decreases exponentially with height. The circulations below and above the condensation level are dominated by dry cellular convection and buoyancy waves, respectively.

When 1.35 is adopted as the critical saturation ratio, clouds appear exclusively as intense, short-lived, quasi-periodic events. Clouds start just above the condensation level and develop upward, but intense updrafts exist only around the cloud top; they do not extend to the bottom of the condensation layer. The cloud layer is rapidly warmed by latent heat during the cloud events, and then the layer is slowly cooled by the specified thermal forcing, and supersaturation gradually develops leading to the next cloud event. The periodic appearance of cloud events does not occur when number mixing ratio of condensed particles is large.

Denotes Open Access content.

Current affiliation: Department of Information Engineering, National Institute of Technology, Matsue College, Matsue, Japan.

Publisher’s Note: This article was revised on 7 October 2016 to correct a typographical error in the third author's name.

Corresponding author address: Masatsugu Odaka, Department of Cosmosciences, Graduate School of Science, Hokkaido University, Science Bldg. 8-202, Kita-10, Nishi-8, Kita-Ku, Sapporo 060-0810, Japan. E-mail: odakker@gfd-dennou.org

Abstract

Cloud convection of a CO2 atmosphere where the major constituent condenses is numerically investigated under a setup idealizing a possible warm atmosphere of early Mars, utilizing a two-dimensional cloud-resolving model forced by a fixed cooling profile as a substitute for a radiative process. The authors compare two cases with different critical saturation ratios as condensation criteria and also examine sensitivity to number mixing ratio of condensed particles given externally.

When supersaturation is not necessary for condensation, the entire horizontal domain above the condensation level is continuously covered by clouds irrespective of number mixing ratio of condensed particles. Horizontal-mean cloud mass density decreases exponentially with height. The circulations below and above the condensation level are dominated by dry cellular convection and buoyancy waves, respectively.

When 1.35 is adopted as the critical saturation ratio, clouds appear exclusively as intense, short-lived, quasi-periodic events. Clouds start just above the condensation level and develop upward, but intense updrafts exist only around the cloud top; they do not extend to the bottom of the condensation layer. The cloud layer is rapidly warmed by latent heat during the cloud events, and then the layer is slowly cooled by the specified thermal forcing, and supersaturation gradually develops leading to the next cloud event. The periodic appearance of cloud events does not occur when number mixing ratio of condensed particles is large.

Denotes Open Access content.

Current affiliation: Department of Information Engineering, National Institute of Technology, Matsue College, Matsue, Japan.

Publisher’s Note: This article was revised on 7 October 2016 to correct a typographical error in the third author's name.

Corresponding author address: Masatsugu Odaka, Department of Cosmosciences, Graduate School of Science, Hokkaido University, Science Bldg. 8-202, Kita-10, Nishi-8, Kita-Ku, Sapporo 060-0810, Japan. E-mail: odakker@gfd-dennou.org
Save
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, J. Chang, Ed., Vol. 17, Academic Press, 173–265, doi:10.1016/B978-0-12-460817-7.50009-4.

    • Search Google Scholar
    • Export Citation
  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487–490, doi:10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A., 1975: Parametric interpretation of trade-wind cumulus budget studies. J. Atmos. Sci., 32, 1934–1945, doi:10.1175/1520-0469(1975)032<1934:PIOTWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chapman, S., and T. G. Cowling, 1970: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, 423 pp.

  • Colaprete, A., and O. B. Toon, 2003: Carbon dioxide clouds in an early dense Martian atmosphere. J. Geophys. Res., 108, 5025, doi:10.1029/2002JE001967.

    • Search Google Scholar
    • Export Citation
  • Colaprete, A., R. M. Haberle, and O. B. Toon, 2003: Formation of convective carbon dioxide clouds near the south pole of Mars. J. Geophys. Res., 108, 5081, doi:10.1029/2003JE002053.

    • Search Google Scholar
    • Export Citation
  • Colaprete, A., J. R. Barnes, R. M. Haberle, and F. Montmessin, 2008: CO2 clouds, CAPE and convection on Mars: Observations and general circulation modeling. Planet. Space Sci., 56, 150–180, doi:10.1016/j.pss.2007.08.010.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 655–14 660, doi:10.1073/pnas.2532677100.

    • Search Google Scholar
    • Export Citation
  • Forget, F., and R. T. Pierrehumbert, 1997: Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science, 278, 1273–1276, doi:10.1126/science.278.5341.1273.

    • Search Google Scholar
    • Export Citation
  • Forget, F., R. Wordsworth, E. Millour, J.-B. Medeleine, L. Kerber, E. Marcq, and R. M. Haberle, 2013: 3D modelling of the early Martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus, 222, 81–99, doi:10.1016/j.icarus.2012.10.019.

    • Search Google Scholar
    • Export Citation
  • Glandorf, D. L., A. Colaprete, M. A. Tolbert, and O. B. Toon, 2002: CO2 snow on Mars and early Earth: Experimental constraints. Icarus, 160, 66–72, doi:10.1006/icar.2002.6953.

    • Search Google Scholar
    • Export Citation
  • Golden, T. C., and S. Sircar, 1994: Gas adsorption on silicate. J. Colloid Interface Sci., 162, 182–188, doi:10.1006/jcis.1994.1023.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative-convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 3909–3927, doi:10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and S. S. Yum, 2002: Cloud condensation nuclei spectra and polluted and clean clouds over the Indian Ocean. J. Geophys. Res., 107, 8022, doi:10.1029/2001JD000829.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46, 3108–3121, doi:10.1175/1520-0469(1989)046<3108:AOICIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kasting, J. F., 1991: CO2 condensation and the climate of early Mars. Icarus, 94, 1–13, doi:10.1016/0019-1035(91)90137-I.

  • Kaye, G. W. C., and T. H. Laby, 1995: Tables and Physical and Chemical Constants. 16th ed. Longman, 624 pp.

  • Kitzmann, D., A. Patzer, and H. Rauer, 2013: Clouds in the atmospheres of extrasolar planets—IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies. Astron. Astrophys., 557, A6, doi:10.1051/0004-6361/201220025.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1960: Energy and numerical weather prediction. Tellus, 12, 364–373, doi:10.1111/j.2153-3490.1960.tb01323.x.

  • Louis, J., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187–202, doi:10.1007/BF00117978.

    • Search Google Scholar
    • Export Citation
  • Mischna, M. A., J. F. Kasting, A. Pavlov, and R. Freedman, 2000: Influence of carbon dioxide clouds on early Martian climate. Icarus, 145, 546–564, doi:10.1006/icar.2000.6380.

    • Search Google Scholar
    • Export Citation
  • Mitsuda, C., 2007: Scattering greenhouse effect of radiatively controlled CO2 ice cloud layer in a Martian paleoatmosphere (in Japanese). Ph.D. thesis, Hokkaido University, 115 pp.

  • Petty, G. W., 2006: A First Course in Atmospheric Radiation. 2nd ed. Sundog Publishing, 472 pp.

  • Rossow, W. B., 1978: Cloud microphysics: Analysis of the clouds of Earth, Venus, Mars, and Jupiter. Icarus, 36, 1–50, doi:10.1016/0019-1035(78)90072-6.

    • Search Google Scholar
    • Export Citation
  • Sabato, J. S., 2008: CO2 condensation in baroclinic eddies on early Mars. J. Atmos. Sci., 65, 1378–1395, doi:10.1175/2007JAS2504.1.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, K., M. Odaka, K. Nakajima, and Y. Y. Hayashi, 2009: Development of a cloud convection model to investigate the Jupiter’s atmosphere. J. Japan Soc. Fluid Mech., 28. [Available online at http://www2.nagare.or.jp/mm/2009/sugiyama/.]

    • Search Google Scholar
    • Export Citation
  • Sugiyama, K., and Coauthors, 2011: Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. Geophys. Res. Lett., 38, L13201, doi:10.1029/2011GL047878.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, K., K. Nakajima, M. Odaka, K. Kuramoto, and Y. Y. Hayashi, 2014: Numerical simulations of Jupiter’s moist convection layer: Structure and dynamics in statistically steady states. Icarus, 229, 71–91, doi:10.1016/j.icarus.2013.10.016.

    • Search Google Scholar
    • Export Citation
  • The Society of Chemical Engineers Japan, 1999: The Handbook of Chemistry and Engineering (in Japanese). Maruzen, 1339 pp.

  • Tobie, G., F. Forget, and F. Lott, 2003: Numerical simulation of winter polar wave clouds observed by Mars Global Surveyor Mars Orbiter Laser Altimeter. Icarus, 164, 33–49, doi:10.1016/S0019-1035(03)00131-3.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shear: The role of water vapor. J. Atmos. Sci., 58, 529–545, doi:10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 59–74, doi:10.1002/2013MS000269.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 253 72 6
PDF Downloads 141 30 3